Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 93(3): 1087-96, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21748379

RESUMEN

We previously described five arabinanolytic enzymes secreted by Penicillium chrysogenum 31B into the culture medium. Here, we describe a sixth such enzyme, termed AbnS1. Analysis of the reaction products of debranched arabinan revealed that AbnS1 cleaved the substrate in an endo manner. The optimum temperature of AbnS1 was 60°C, which was much higher than that of a cold-adapted endo-arabinanase (Abnc) produced by this strain. The abns1 cDNA gene encoding AbnS1 was isolated by in vitro cloning. The deduced amino acid sequence of AbnS1 had 70% identity with that of Abnc. Pfam analysis revealed a Glyco_hydro_43 domain at positions 28 to 318 of AbnS1. Semi-quantitative reverse transcription-polymerase chain reaction analysis indicated that the abns1 gene was constitutively expressed in P. chrysogenum 31B at a low level, although the expression was only slightly induced with arabinose and arabinan. In contrast, expression of the abnc gene encoding Abnc was strongly induced by arabinose, arabinitol, and arabinan. Using debranched arabinan as substrate, recombinant AbnS1 (rAbnS1) accumulated arabinobiose and arabinotriose as the major products. Recombinant Abnc (rAbnc) released mainly arabinotriose and lesser amounts of arabinose and arabinobiose than did rAbnS1. Branched arabinan was completely degraded to arabinose by the action of rAbnS1 or rAbnc in combination with α-L: -arabinofuranosidase.


Asunto(s)
Escherichia coli/enzimología , Regulación Enzimológica de la Expresión Génica , Glicósido Hidrolasas/metabolismo , Penicillium chrysogenum/enzimología , Secuencia de Aminoácidos , Arabinosa/metabolismo , Clonación Molecular , Frío , Escherichia coli/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/aislamiento & purificación , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Penicillium chrysogenum/genética , Polisacáridos/metabolismo , Análisis de Secuencia de ADN , Especificidad por Sustrato , Temperatura
2.
Commun Biol ; 1: 218, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534610

RESUMEN

Conventional cell handling and sorting methods require manual labor, which decreases both cell quality and quantity. To purify adherent cultured cells, cell purification technologies that are high throughput without dissociation and can be utilized in an on-demand manner are expected. Here, we developed a Laser-induced, Light-responsive-polymer-Activated, Cell Killing (LiLACK) system that enables high-speed and on-demand adherent cell sectioning and purification. This system employs a visible laser beam, which does not kill cells directly, but induces local heat production through the trans-cis-trans photo-isomerization of azobenzene moieties. Using this system in each passage for sectioning, human induced pluripotent stem cells (hiPSCs) maintained their pluripotency and self-renewal during long-term culture. Furthermore, combined with deep machine-learning analysis on fluorescent and phase contrast images, a label-free and automatic cell processing system has been developed by eliminating unwanted spontaneously differentiated cells in undifferentiated hiPSC culture conditions.

3.
FEBS Open Bio ; 4: 730-4, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25161881

RESUMEN

Protein disulfide isomerases (PDIs), a family of thiol-disulfide oxidoreductases that are ubiquitous in all eukaryotes, are the principal catalysts for disulfide bond formation. Here, we investigated three rice (Oryza sativa) PDI family members (PDIL1;1, PDIL1;4, and PDIL2;3) and found that PDIL1;1 exhibited the highest catalytic activity for both disulfide bond formation and disulfide bond reduction. The activity of PDIL1;1-catalyzed disulfide bond reduction, in which two redox-active sites were involved, was enhanced by increasing the glutathione concentration. These results suggest that PDIL1;1 plays primary roles in both disulfide bond formation and disulfide bond reduction, which allow for redox control of protein quality and packaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA