Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Analyst ; 149(5): 1609-1617, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38294003

RESUMEN

The recovery of the polyol component, after glycolysis of polyurethane (PU) foams coming from automotive waste, was investigated. Several separation methods such as simple sedimentation, centrifugation and liquid-liquid extraction, eventually preceded by an acid washing step, were tested. The obtained fractions were characterized by infrared spectroscopy and CHN elemental analysis. Furthermore, multivariate data analysis was carried out on the infrared spectra by principal component analysis to classify the fractions based on purity. IR spectroscopy coupled with principal component analysis was able to estimate the success of the separation and eventual culprits such as contaminations, which were then quantified by CHN elemental analysis. This approach addresses some critical limitations associated with classical analytical techniques such as NMR, TGA, GPC, MALDI-TOF that often require an extremely accurate separation of the depolymerized product fractions. Moreover, IR spectroscopy and CHN elemental analysis techniques are cheap and widespread in standard materials science laboratories. At last, based on the results of the analysis of the regenerated polyol fractions, and on the foaming tests, considerations were made to guide the choice of the purification method according to the application specifications and greenness.

2.
Polymers (Basel) ; 13(9)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062861

RESUMEN

In this paper, we report a study on the effects of different ethylene copolymers in improving the impact strength of a fiber-reinforced composite based on a recycled poly(ethylene terephthalate) (rPET) from post-consumer bottles. Different ethylene copolymers have been selected in order to evaluate the effects of the polar co-monomer chemical structure and content. The composite mixtures were prepared via melt extrusion, and the samples were manufactured by injection molding. Impact strength was evaluated using Izod tests, and a morphological study (FESEM) was performed. As a result, a composite with substantially improved impact properties was designed. This study demonstrates that a post-consumer PET from the municipal waste collection of plastic bottles can be successfully used as a matrix of high-performance, injection-molded composites, suitable for use in the automotive sector, among others, with no compromise in terms of mechanical requirements or thermal stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA