Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Microbiol ; 49(6): 815-833, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36394607

RESUMEN

Perturbations in microbial abundance or diversity in the intestinal lumen leads to intestinal inflammation and disruption of intestinal membrane which eventually facilitates the translocation of microbial metabolites or whole microbes to the liver and other organs through portal vein. This process of translocation finally leads to multitude of health disorders. In this review, we are going to focus on the mechanisms by which gut metabolites like SCFAs, tryptophan (Trp) metabolites, bile acids (BAs), ethanol, and choline can either cause the development/progression of non-alcoholic fatty liver disease (NAFLD) or serves as a therapeutic treatment for the disease. Alterations in some metabolites like SCFAs, Trp metabolites, etc., can serve as biomarker molecules whereas presence of specific metabolites like ethanol definitely leads to disease progression. Thus, proper understanding of these mechanisms will subsequently help in designing of microbiome-based therapeutic approaches. Furthermore, we have also focussed on the role of dysbiosis on the mucosal immune system. In addition, we would also compile up the microbiome-based clinical trials which are currently undergoing for the treatment of NAFLD and non-alcoholic steatohepatitis (NASH). It has been observed that the use of microbiome-based approaches like prebiotics, probiotics, symbiotics, etc., can act as a beneficial treatment option but more research needs to be done to know how to manipulate the composition of gut microbes.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Probióticos , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , Probióticos/uso terapéutico , Etanol
2.
Molecules ; 28(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36903587

RESUMEN

In the emerging field of nanomedicine, nanoparticles have been widely considered as drug carriers and are now used in various clinically approved products. Therefore, in this study, we synthesized superparamagnetic iron-oxide nanoparticles (SPIONs) via green chemistry, and the SPIONs were further coated with tamoxifen-conjugated bovine serum albumin (BSA-SPIONs-TMX). The BSA-SPIONs-TMX were within the nanometric hydrodynamic size (117 ± 4 nm), with a small poly dispersity index (0.28 ± 0.02) and zeta potential of -30.2 ± 0.09 mV. FTIR, DSC, X-RD, and elemental analysis confirmed that BSA-SPIONs-TMX were successfully prepared. The saturation magnetization (Ms) of BSA-SPIONs-TMX was found to be ~8.31 emu/g, indicating that BSA-SPIONs-TMX possess superparamagnetic properties for theragnostic applications. In addition, BSA-SPIONs-TMX were efficiently internalized into breast cancer cell lines (MCF-7 and T47D) and were effective in reducing cell proliferation of breast cancer cells, with IC50 values of 4.97 ± 0.42 µM and 6.29 ± 0.21 µM in MCF-7 and T47D cells, respectively. Furthermore, an acute toxicity study on rats confirmed that these BSA-SPIONs-TMX are safe for use in drug delivery systems. In conclusion, green synthesized superparamagnetic iron-oxide nanoparticles have the potential to be used as drug delivery carriers and may also have diagnostic applications.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Humanos , Ratas , Animales , Nanopartículas de Magnetita/química , Células MCF-7 , Nanopartículas Magnéticas de Óxido de Hierro , Portadores de Fármacos , Nanopartículas/química , Hierro , Óxidos
3.
Pharm Dev Technol ; 28(7): 595-610, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37342048

RESUMEN

Non-alcoholic fatty liver disease is one of the leading causes of death worldwide. Even if with such a high mortality there is no definite treatment approved. Thus, there is a need to develop a formulation which can have multiple pharmacological activities. Herbal drugs are among the most promising compounds that act by different pharmacological actions. For increasing the bio-activity of Silymarin we had isolated five active biomarker molecules from silymarin extract (as a Phytopharmaceutical) in our previous work. It possesses lower bioavailability due to poor solubility, lesser permeability and first pass metabolism effect. Therefore, from the literature we had screened two bioavailability enhancers i.e. piperine and fulvic acid for overcoming the drawbacks associated with silymarin. Hence, in this study we had first explored the ADME-T parameters and then evaluated their in-silico activity for different enzymes involved in inflammation and fibrosis. Interestingly, it was found that besides the bioavailability enhancing property, piperine and fulvic acid also shown anti-inflammatory and anti-fibrotic action, particularly more activity was demonstrated by fulvic acid than piperine. Furthermore, the concentration of the bioavailability enhancers i.e. 20% FA and 10% PIP were optimized by QbD assisted solubility studies. Moreover, the percentage release and apparent permeability coefficient of the optimized formulation was found to be 95% and 90%, respectively as compared to 6.54*106 and 1.63*106 respectively by SM suspension alone. Furthermore, it was found that plain rhodamine solution penetrated only up to 10 um whereas, formulation penetrated up to 30 um. Thus, combining these three, can not only increase the bioavailability of silymarin, but might also, increase the physiological action synergistically.


Asunto(s)
Silimarina , Silimarina/farmacología , Solubilidad , Permeabilidad , Disponibilidad Biológica
4.
J Microencapsul ; 39(6): 522-538, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36327982

RESUMEN

Low aqueous solubility, adverse effects of Cisplatin includes hepatotoxicity and nephrotoxicity necessitates development of nanoparticulate drug delivery. The study pertains to development of CisNLC (Cisplatin loaded Nanostructured Lipid Carrier) by ultrasonication. Physical characterisation includes particle size, zeta potential, TEM, SEM-EDX, DSC. Its ex vivo biocompatibility, pharmacokinetics and biodistribution along with acute toxicity induced oxidative stress in Balb/c mice were evaluated. The mean particle diameter of CisNLC was observed to be 141.5 ± 3.86 nm with zeta potential of -41.5 ± 1.62 mV. In vitro release studies at pH 7.4 and 5.8 showed burst release following a sustained release pattern post-72 h. CisNLC showed anticancer efficacy against PA-1. Negligible ex vivo haemolysis indicated bio-compatibility. Improved pharmacokinetics of CisNLC was observed. Acute toxicity and oxidative stress evaluation proved negligible toxicity by CisNLC. The formulated CisNLC had a good physical stability, biocompatible, indicated enhanced circulation and caused negligible toxicity on liver and kidney as compared to pure Cis.


Asunto(s)
Cisplatino , Nanoestructuras , Ratones , Animales , Cisplatino/farmacología , Distribución Tisular , Lípidos , Sistemas de Liberación de Medicamentos , Tamaño de la Partícula , Portadores de Fármacos/farmacocinética
5.
Phytother Res ; 35(10): 5440-5458, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34184327

RESUMEN

Traditionally, herbal supplements have shown an exceptional potential of desirability for the prevention of diseases and their treatment. Sulforaphane (SFN), an organosulfur compound belongs to the isothiocyanate (ITC) group and is mainly found naturally in cruciferous vegetables. Several studies have now revealed that SFN possesses broad spectrum of activities and has shown extraordinary potential as antioxidant, antitumor, anti-angiogenic, and anti-inflammatory agent. In addition, SFN is proven to be less toxic, non-oxidizable, and its administration to individuals is well tolerated, making it an effective natural dietary supplement for clinical trials. SFN has shown its ability to be a promising future drug molecule for the management of various diseases mainly due to its potent antioxidant properties. In recent times, several newer drug delivery systems were designed and developed for this potential molecule in order to enhance its bioavailability, stability, and to reduce its side effects. This review focuses to cover numerous data supporting the wide range of pharmacological activities of SFN, its drug-related issues, and approaches to improve its physicochemical and biological properties, including solubility, stability, and bioavailability. Recent patents and the ongoing clinical trials on SFN are also summarized.


Asunto(s)
Antioxidantes , Isotiocianatos , Antiinflamatorios , Antioxidantes/farmacología , Suplementos Dietéticos , Humanos , Sulfóxidos
6.
Nanotechnology ; 31(35): 355103, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32380490

RESUMEN

Various lipid nanovesicular systems have been developed with the aim to enhance the delivery of drugs via transdermal route. However, their clinical applications are often limited due to the barrier nature of skin and lack of flexibility. Herein, we have modified the conventional nanoliposomes (CLs) prepared by a thin-film hydration method by the addition of a polyol (glycerol) to form novel lipid nanovesicular structures termed 'POLYOLIPOSOMES' (PLs). They were further named as PL-B (before film formation) and PL-A (after film formation), depending on the stage of glycerol addition during production. Optimized CLs, PL-B and PL-A showed spherical nanovesicles and hydrodynamic diameter of 181.3 ± 4.11 nm, 114.2 ± 7.21 nm and 170.2 ± 6.51 nm, respectively. PLs showed significantly higher % entrapment efficiency and deformability index in comparison to CLs, indicating their higher flexibility. Furthermore, DSC and attenuated total relection (ATR)-Fourier transform infrared (FTIR) studies revealed the intercalation of glycerol into the lipid bilayer of PLs and interaction between nanovesicles and skin. Moreover, ex vivo and in vivo skin permeation studies confirmed the enhanced drug delivery of PLs via the transdermal route. Taken together, these results illustrate the potential of PLs as a novel lipid nanovesicular system for drug delivery via the transdermal route for both systematic (PL-B) as well as cutaneous diseases (PL-A).


Asunto(s)
Glicerol/química , Liposomas/farmacocinética , Piel/química , Administración Cutánea , Administración Tópica , Animales , Composición de Medicamentos , Hidrodinámica , Liposomas/administración & dosificación , Liposomas/química , Ratones , Nanopartículas , Tamaño de la Partícula , Permeabilidad , Espectroscopía Infrarroja por Transformada de Fourier
7.
Nanotechnology ; 31(47): 475101, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32886644

RESUMEN

Nanotherapeutics in cancer treatment are dominating global science and research, and have been recognized as the pioneering medical care regimen. Raloxifene (RLN) has been used for its anti-proliferative action on mammary tissue, however, it suffers from poor oral bioavailability. This investigation gives an account of the design and development of RLN-loaded nanostructured lipid carriers (RLN-NLCs) using a simple and scalable ultrasonication method for improved oral efficacy and limited offsite toxicity using Compritol® 888 ATO as a solid lipid and Transcutol® HP as a liquid lipid. In addition, the optimized RLN-NLCs were in the nanometric range (121 nm) with high % entrapment efficiency (%EE) (81%) for RLN, and were further freeze-dried in the presence of mannitol to enhance the stability of RLN-NLCs in the dry state for long-term use. Morphological observation under a transmission electron microscope and scanning electron microscope revealed the spherical smooth surface nanometric size of RLN-NLCs. Powder x-ray diffraction confirmed the encapsulation of RLN into the RLN-NLC's matrix with reduced crystallinity of the drug. The in vitro release study showed a burst release for an initial 4 h, and sustained release for up to 24 h. Furthermore, the RLN-NLCs showed higher cytotoxicity towards MCF-7 cells in vitro in comparison to RLN suspension, and an ex vivo intestinal permeation study demonstrated improved intestinal permeability of RLN-NLCs. Moreover, the in vivo pharmacokinetic study in female Wistar rats showed a 4.79-fold increment in oral bioavailability of RLN from RLN-NLCs compared to RLN suspension. Taken together, our results pave the way for a new nanotherapeutic approach towards breast cancer treatment.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Portadores de Fármacos/química , Glicoles de Etileno/química , Ácidos Grasos/química , Clorhidrato de Raloxifeno/administración & dosificación , Administración Oral , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Femenino , Humanos , Células MCF-7 , Nanoestructuras/química , Clorhidrato de Raloxifeno/farmacocinética , Clorhidrato de Raloxifeno/farmacología , Ratas Wistar , Moduladores Selectivos de los Receptores de Estrógeno/administración & dosificación , Moduladores Selectivos de los Receptores de Estrógeno/farmacocinética , Moduladores Selectivos de los Receptores de Estrógeno/farmacología
8.
J Microencapsul ; 37(2): 91-108, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31810417

RESUMEN

Aim: The optimisation and evaluation of ethosomal nanogel (NGs) for topical delivery in skin cancer.Methods: The formulations were optimised by employing 3-factor, 3-level Box Behnken design for responses of vesicle size, and fluxes. They characterised in vitro and evaluated for drug release, permeation and retention, skin penetration of ethosome, electron microscopy, texture analysis, and in vitro cytotoxicity.Results: The optimised formulation exhibited z-average 125.67 ± 10.43 nm, apparent zeta potential -17.1 ± 2.61 mV, average flux of drug loaded ethosome were 54.72 ± 5.45 and 59.83 ± 6.09 µg/cm2/h. Further, Rhodamine B loaded ethosome penetrated deeper up to 183.82 µm. The NGs texture analysis showed index of viscosity 225.45 g.s, firmness 209.34 g, cohesiveness -189.48 g, and consistency 59.45 g.s. The optimised ethosome NGs exhibited significant anti-cancer effect in B16-F10 murine tumour cell line (p < 0.05).Conclusion: Ethosomal NGs could be promising for skin cancer treatment.


Asunto(s)
Sistemas de Liberación de Medicamentos , Isotiocianatos , Melanoma Experimental/tratamiento farmacológico , Nanogeles , Neoplasias Cutáneas/tratamiento farmacológico , Administración Tópica , Ensayos de Selección de Medicamentos Antitumorales , Isotiocianatos/química , Isotiocianatos/farmacología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Nanogeles/química , Nanogeles/uso terapéutico , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Sulfóxidos
9.
Drug Dev Ind Pharm ; 45(12): 1871-1878, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31549523

RESUMEN

Palatability of a formulation is one of the primary requirements for therapeutic compliance in children. Clindamycin (CLN) often prescribed to children to treat various infections. However, it has a bitter taste and bad smell. The focus of the present investigation was to develop salt of CLN with a commonly used sweetener such as cyclamic acid (CYA) to improve the palatability. The salt forms were prepared by solubilization crystallization method and characterized by Fourier transformed infrared (FTIR), Near infrared (NIR), Raman, X-ray powder diffraction, scanning electron microscopy, solubility, dissolution, and solid-state physical and chemical stability at 25 °C/60% RH and 40 °C/75% RH for 1 month and 60 °C for 2 weeks. Spectroscopic and diffraction data indicated the formation of a new solid phase, which was different from hydrochloride salt of CLN. Shape of crystal was rectangular prism. Stoichiometric ratio between CLN and CYA in the new salt CLN-CYA was 1:1 and its melting point was 85.6 °C. There was a 2.4-fold reduction in solubility of CLN-CYA at pH 4 compared with CLN-HCl. Moreover, the dissolution rate and extent were similar between the two salts and meeting USP requirement of 85% dissolution in 30 min. Salt was physically and chemically stable at 60 °C, 25 °C/60% RH, and 40 °C/75% RH conditions but hygroscopic at high humidity condition. In conclusion, new salt will provide a new avenue for the development of a palatable formulation of CLN.


Asunto(s)
Antibacterianos/química , Clindamicina/química , Ciclamatos/química , Composición de Medicamentos/métodos , Edulcorantes/química , Administración Oral , Factores de Edad , Antibacterianos/administración & dosificación , Química Farmacéutica/métodos , Niño , Clindamicina/administración & dosificación , Estabilidad de Medicamentos , Humanos , Polvos , Olfato , Solubilidad , Gusto
10.
Pharm Dev Technol ; 24(4): 427-438, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30063165

RESUMEN

This study aims to develop sulforaphane-loaded gold nanoparticles (SFN-GNPs) as a potential nanomedicine against the solid tumors. Citrate-mediated electrolysis optimized by four-factor three-level Box-Behnken experimental design was used to get nanoparticles of size <200 nm. The formulation was characterized and evaluated for cytotoxicity B16-F10, MCF-7, SW-620 and Caco-2 cell line. Single dose oral pharmacokinetics, gamma scintigraphy-based bio-distribution and tumor regression studies were conducted to evaluate the in vivo performance. Optimized SFN-GNPs showed spherical morphology with a particle size of 147.23 ± 5.321 nm, the zeta potential of -12.7 ± 1.73 mV, entrapment efficiency of 83.17 ± 3.14% and percentage drug loading of 37.26 ± 2.33%. With SFN-GNPs, both SFN (75.99 ± 2.36%) and gold (58.11 ± 2.48%) were able to permeate through the intestinal wall in 48 h. SFN-GNPs were able to bring LC50 of <100 µg/ml in all the cytotoxicity assays, more than 5-fold increase in AUC0-t, enhanced retention at tumor site as well as significant pre-induction tumor growth inhibition and post-induction tumor reduction as compared to plain SFN solution.


Asunto(s)
Antineoplásicos/farmacocinética , Oro/farmacocinética , Absorción Intestinal/efectos de los fármacos , Isotiocianatos/farmacocinética , Nanopartículas del Metal/administración & dosificación , Animales , Antineoplásicos/química , Células CACO-2 , Oro/química , Humanos , Absorción Intestinal/fisiología , Isotiocianatos/química , Células MCF-7 , Masculino , Melanoma Experimental/diagnóstico por imagen , Melanoma Experimental/metabolismo , Ratones , Ratas , Ratas Wistar , Sulfóxidos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
11.
AAPS PharmSciTech ; 19(3): 1377-1391, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29388027

RESUMEN

Statins are widely prescribed for hyperlipidemia, cancer, and Alzheimer's disease but are facing some inherent challenges such as low solubility and drug loading, higher hepatic metabolism, as well as instability at gastric pH. So, relatively higher circulating dose, required for exerting the therapeutic benefits, leads to dose-mediated severe toxicity. Furthermore, due to low biocompatibility, high toxicity, and other regulatory caveats such as product conformity, reproducibility, and stability of conventional formulations as well as preferentially higher bioabsorption of lipids in their favorable cuboidal geometry, enhancement in in vivo biopharmaceutical performance of Rosuvastatin could be well manifested in Quality by Design (QbD) integrated cuboidal-shaped mucoadhesive microcrystalline delivery systems (Limicubes). Here, quality-target-product-profile (QTPPs), critical quality attributes (CQAs), Ishikawa fishbone diagram, and integration of risk management through risk assessment matrix for failure mode and effects analysis (FMEA) followed by processing of Plackett-Burman design matrix using different statistical test for the first time established an approach to substantiate the claims that controlling levels of only these three screened out independent process variables, i.e., Monoolein (B = 800-1100 µL), Poloxamer (C = 150-200 mg), and stirring speed (F = 700-1000 rpm) were statistically significant to modulate and improve the biopharmaceutical performance affecting key attributes, viz., average particle size (Y1 = 1.40-2.70 µ), entrapment efficiency (Y2 = 62.60-88.80%), and drug loading (Y3 = 0.817-1.15%), in QbD-enabled process. The optimal performance of developed Limicubes exhibited an average particle size of 1.8 ± 0.2 µ, entrapment efficiency 80.32 ± 2.88%, and drug loading 0.93 ± 0.08% at the level of 1100 µL (+ 1), 200 mg (+ 1), and 700 rpm (- 1) for Monoolein, Poloxamer, and stirring speed, respectively.


Asunto(s)
Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/métodos , Rosuvastatina Cálcica/administración & dosificación , Rosuvastatina Cálcica/química , Administración Oral , Liberación de Fármacos/fisiología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Inhibidores de Hidroximetilglutaril-CoA Reductasas/química , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Lípidos/química , Tamaño de la Partícula , Reproducibilidad de los Resultados , Medición de Riesgo , Rosuvastatina Cálcica/metabolismo , Solubilidad
12.
J Microencapsul ; 34(4): 416-429, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28595495

RESUMEN

This study aims at developing an optimised nanostructured lipid carrier (NLC) of lycopene for efficient absorption following oral administration. The optimised formulation showed an average particle size of 121.9 ± 3.66 nm, polydispersity index (PDI) 0.370 ± 0.97 and zeta potential -29.0 ± 0.83 mV. Encapsulation Efficiency (% EE) and drug loading (% DL) was found to be 84.50% ± 4.38 and 9.54% ± 2.65, respectively. In vitro release studies demonstrated the burst release within 4-9 h followed by sustained release over 48 h. The IC50 value of lycopene extract and optimised NLC for ABTS+• were found to be 172.37 µg Trolox equivalent and 184.17 µg Trolox equivalent whereas, for DPPH•, 117.76 µg Trolox equivalent and 143.08 µg Trolox equivalent respectively. Ex vivo studies and MTT assay revealed that the NLC had better permeation and cause sufficiently more cytotoxicity as compared to drug extract due to higher bioavailability and greater penetration.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Carotenoides/administración & dosificación , Portadores de Fármacos/química , Excipientes/química , Lípidos/química , Administración Oral , Animales , Línea Celular Tumoral , Química Farmacéutica , Liberación de Fármacos , Humanos , Licopeno , Solanum lycopersicum/química , Masculino , Tamaño de la Partícula , Ratas
13.
Pharm Biol ; 55(1): 1295-1303, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28274156

RESUMEN

CONTEXT: The cardiotoxic effect of selective cyclo-oxygenase-2 inhibitors is well known. While rofecoxib and valdecoxib have been withdrawn, celecoxib remains on the market. Folic acid, a naturally occurring vitamin, has been shown to reduce myocardial ischemia and post-reperfusion injury in rats. OBJECTIVE: This study examined the cardiac effects of celecoxib and folic acid on doxorubicin-induced cardiomyopathy in rats. MATERIALS AND METHODS: Cardiomyopathy was induced in male Wistar rats with six intraperitoneal injections of 2.5 mg/kg doxorubicin over a period of two weeks. The effect of 28 days of celecoxib (100 mg/kg/day) and its combination with folic acid (10 mg/kg/day) was studied on doxorubicin-induced cardiomyopathy according to serum lactate dehydrogenase (LDH), creatine kinase (CK-MB), troponin-T (Tn-T), tumor necrosis factor alpha (TNF-α), cardiac thiobarbituric acid reactive substance (TBARS), and glutathione (GSH) levels as well as systolic blood pressure (SBP), heart rate (HR) and ultrastructural studies. RESULTS: Celecoxib cardiotoxicity was manifested by significant increases in the LDH, Tn-T, TNF-α, CK-MB, SBP, HR (p < 0.001) and TBARS (p < 0.01) levels and a significant decrease in the GSH (p < 0.05) level when used alone or administered with doxorubicin. However, the combination of folic acid with celecoxib caused a significant reversal of these parameters and reduced the cardiotoxicity of celecoxib that was aggravated by doxorubicin. The ultrastructural study also revealed myocardial protection with this combination. DISCUSSION AND CONCLUSION: Folic acid protects against the cardiotoxic effects of celecoxib, which are aggravated in the presence of doxorubicin. Folic acid may act as a useful adjunct in patients who are taking celecoxib.


Asunto(s)
Cardiotoxicidad/prevención & control , Celecoxib/toxicidad , Modelos Animales de Enfermedad , Ácido Fólico/uso terapéutico , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/prevención & control , Animales , Cardiotoxicidad/etiología , Cardiotoxicidad/metabolismo , Insuficiencia Cardíaca/metabolismo , Masculino , Distribución Aleatoria , Ratas , Ratas Wistar
15.
Pharm Dev Technol ; 19(1): 21-30, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23281713

RESUMEN

The focus of the present study was to develop and evaluate the transdermal system of celecoxib. Transdermal gels composed of carbopol 940 in propylene glycol (PG) containing penetration enhancers. The formulations were characterized by permeation, pharmacokinetics, pharmacodynamics and histopathology. Celecoxib permeation across excised rat skins were statistically (p < 0.05) enhanced by tulsi oil compared to turpentine oil containing formulations. In comparison to orally administered formulations, the pharmacokinetic parameters of gel and control formulations were significantly higher (p < 0.05). The maximum plasma concentration (Cmax) obtained with formulations containing 4% turpentine and 6% tulsi oil was, respectively, 1.52 and 2.41 times higher than the formulations without penetration enhancer. Similarly, area under the curve (AUC) of these formulations was 1.70 and 2.40 times higher than the formulations without penetration enhancers. Anti-inflammatory studies demonstrated a statistically significant (p < 0.05) pharmacodynamics profile for the transdermal gel formulations compared to orally administered and control celecoxib formulations. Histopathological studies revealed some disruption in the epidermis without any toxic effect on the dermis layer of skin by penetration enhancers. In summary, the transdermal gel formulations of celecoxib containing penetration enhancers sustained drug level in the blood and will reduce the dose frequency as required with its conventional oral formulation.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2/administración & dosificación , Geles/química , Vehículos Farmacéuticos/química , Aceites de Plantas/química , Pirazoles/administración & dosificación , Absorción Cutánea , Sulfonamidas/administración & dosificación , Resinas Acrílicas/química , Administración Cutánea , Animales , Celecoxib , Inhibidores de la Ciclooxigenasa 2/farmacocinética , Inhibidores de la Ciclooxigenasa 2/farmacología , Portadores de Fármacos/química , Edema/tratamiento farmacológico , Edema/patología , Masculino , Pirazoles/farmacocinética , Pirazoles/farmacología , Ratas , Ratas Wistar , Piel/metabolismo , Sulfonamidas/farmacocinética , Sulfonamidas/farmacología
16.
Curr Mol Med ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38847251

RESUMEN

Pregabalin and diclofenac diethylamine are anti-inflammatory molecules that are effective in relieving inflammation and pain associated with musculoskeletal disorders, arthritis, and post-traumatic pain, among others. Intravenous and oral delivery of these two molecules has their limitations. However, the transdermal route is believed to be an alternate viable option for the delivery of therapeutic molecules with desired physicochemical properties. To this end, it is vital to understand the physicochemical properties of these drugs, dosage, and strategies to enhance permeation, thereby surmounting the associated constraints and concurrently attaining a sustained release of these therapeutic molecules when administered in combination. The present work hypothesizes the enhanced permeation and sustained release of Pregabalin and diclofenac diethylamine across the skin, entrapped in the adhesive nano-organogel formulation, including permeation enhancers. The solubility studies of Pregabalin and diclofenac diethylamine in combination were performed in different permeation enhancers. Oleic acid was optimized as the best permeation enhancer based on in vitro studies. Pluronic organogel containing Pregabalin and diclofenac diethylamine with oleic acid was fabricated. Duro-Tak® (87-2196) was added to the organogel formulation as a pressure-sensitive adhesive to sustain the release profile of these two therapeutic molecules. The adhesive organogel was characterized for particle size, scanning electron microscopy, and contact angle measurement. The HPLC method developed for the quantification of the dual drug showed a retention time of 3.84 minutes and 9.69 minutes for pregabalin and diclofenac, respectively. The fabricated nanogel adhesive formulation showed the desired results with particle size and contact angle of 282 ± 57 nm and ≥120°, respectively. In vitro studies showed the percentage cumulative release of 24.90 ± 4.65% and 33.29 ± 4.81% for pregabalin and diclofenac, respectively. In order to accomplish transdermal permeation, the suggested hypothesis of fabricating PG and DEE nano-organogel in combination with permeation enhancers will be a viable drug delivery method. In comparison to a traditional gel formulation, oleic acid as a permeation enhancer increased the penetration of both PG and DEE from the organogel formulation. Notably, the studies showed that the use of pressure-sensitive adhesives enabled the sustained release of both PG and DEE.Therefore, the results anticipated the hypothesis that the transdermal delivery of adhesive PG and DEE-based nanogel across the human skin can be achieved to inhibit inflammation and pain.

17.
J Forensic Sci ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992862

RESUMEN

Cannabis is one of the most consumed illicit drugs and the potency of cannabis products is of note due to health-related concerns. Hand-rubbed hashish is the ancient technique of extracting psychoactive resin from cannabis plants and is practiced in the Indian Himalayas. This study establishes the cannabinoid profile and potency of hand-rubbed hashish collected from 20 regions of the northwest Himalayas. Fifty-eight hashish samples were analyzed using a validated high-performance liquid chromatography-diode array detection (HPLC-DAD) method. Ten cannabinoids were quantified including acidic (THCA & CBDA), and neutral compounds (CBDA, THCV, CBD, CBG, CBN, Δ9-THC, Δ8-THC, and CBC). The mean concentration (w/w%) of Δ9-THC is 26%; THCA is 15% and THCTotal is 40% is observed in the studied hashish samples. The majority (70%) of the hashish samples were categorized in chemotype I with the THC:CBD:CBN ratio of 91:3:4, and the remaining 30% were categorized under chemotype II with the ratio of 76:15:8. Diverse qualities of hashish are produced in the studied regions as per the seed, plant selection, and skills of manual rubbing, which results in potency variations. The average difference between the least and highest potent hand-rubbed hashish of a region is 27 w/w% (THCTotal). The other studied non-psychoactive cannabinoids have a mean w/w% of <5%, followed by 6% of CBDA. It is concluded that the cultivated and wild cannabis fields in the northwest Himalayas belong to the drug-type cannabis subspecies. Hand-rubbed hashish holds traditional significance and impacts the current policies of legislation.

18.
Heliyon ; 10(12): e33505, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39027434

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a significant consequence of metabolic dysfunction, often associated with changes in the intestinal microbiota. Prebiotics and probiotics have shown promise in NAFLD management. This study evaluated a silymarin-based herbal remedy with piperine and fulvic acid, alongside a probiotic blend of Bifidobacterium adolescentis, Bifidobacterium bifidum, Lactobacillus casei, and Lactobacillus rhamnosus. Using a NAFLD mouse model induced by a high-fat and high-fructose diet, we assessed biochemical parameters, liver function, glucose levels, and conducted histological analysis. Stool samples underwent 16S rRNA metagenomic analysis to explore changes in microbiota composition. Mice on the high-fat diet exhibited elevated lipids, liver enzymes, and glucose, with reduced high-density lipoprotein levels (with p value < 0.001). Treatment, particularly with F3 (silymarin-piperine-fulvic acid herbal remedy and probiotic blend), significantly reduced hepatic fat accumulation and improved gut microbiota composition. This study highlights the potential of silymarin-based therapy combined with probiotics in attenuating NAFLD progression.

19.
ACS Omega ; 9(8): 9735-9752, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38434864

RESUMEN

For achieving high effectiveness in the management of breast cancer, coadministration of drugs has attracted a lot of interest as a mode of therapy when compared to a single chemotherapeutic agent that often results in reduced therapeutic end results. Owing to their proven effectiveness, good patient compliance, and lower costs, oral anticancer drugs have received much attention. In the present work, we formulated the chitosan-coated nanoliposomes loaded with two lipophilic agents, namely, exemestane (EXE) and genistein (GEN). The formulation was prepared using the ethanol injection method, which is considered a simple method for getting the nanoliposomes. The formulation was optimized using Box-Behnken design (BBD) and was extensively characterized for particle size, ζ-potential, Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) analysis. The sizes of conventional and coated liposomes were found to be 104.6 ± 3.8 and 120.3 ± 6.4 nm with a low polydispersity index of 0.399 and 0.381, respectively. The ζ-potential of the liposomes was observed to be -16.56 mV, which changed to a positive value of +22.4 mV, clearly indicating the complete coating of the nanoliposomes by the chitosan. The average encapsulation efficiency was found to be between 70 and 80% for all prepared formulations. The compatibility of the drug with excipients and complete dispersion of the drug inside the system were verified by FTIR, XRD, and DSC studies. Furthermore, the in vitro release studies concluded the sustained release pattern following the Korsmeyer-Peppas model as the best-fitting model with Fickian diffusion. Ex vivo studies showed better permeation of the chitosan-coated liposomes, which was further confirmed by confocal studies. The prepared chitosan-coated liposomes showed superior antioxidant activity (94.56%) and enhanced % cytotoxicity (IC50 7.253 ± 0.34 µM) compared to the uncoated liposomes. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay displayed better cytotoxicity of the chitosan-coated nanoliposomes compared to the plain drug, showing the better penetration and enhanced bioavailability of drugs inside the cells. The formulation was found to be safe for administration, which was confirmed using the toxicity studies performed on an animal model. The above data suggested that poorly soluble lipophilic drugs could be successfully delivered via chitosan-coated liposomes for their effective delivery in breast cancer.

20.
ACS Omega ; 9(28): 30120-30130, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39035924

RESUMEN

The present study describes the development and validation of a simple and rapid HPLC method for the simultaneous quantification of exemestane and thymoquinone. The separation of both compounds was performed on a 5 µ C-18 column utilizing phase A as water/methanol (45:5 v/v) and phase B as acetonitrile (50 v/v) (total ratio of A/B = 40:60 v/v) in isocratic elution mode as the mobile phase at a flow rate of 0.8 mL/min. Further, the Box-Behnken design was used for optimizing the analytical method. The proposed method was validated for various parameters, and all parameters were found to be within an acceptable range. The simultaneous detection of both drugs was monitored at 243 nm with a retention time of 5.73 and 6.93 min, respectively. Moreover, the forced degradation studies were conducted under various stress conditions, and the relevance of the validated RP-HPLC method was further explored for the estimation of drugs from lipid-based nanoformulation. Taken together, the study construed the development of an efficient and robust method that could be used for the quantification of these agents in various in vitro as well as in vivo models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA