Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dev Med Child Neurol ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641898

RESUMEN

AIM: To modify the antibody prevalence in epilepsy (APE) score of children with suspected autoimmune central nervous system disease with seizures. METHODS: We retrospectively analysed the cerebrospinal fluid of 157 children (aged 0-18 years) with suspected autoimmune central nervous system disease for antineuronal antibodies in our laboratory from 2016 to 2023. Participants were randomly divided into the development cohort (n = 79, 35 females; median 7 years, SD 4 years 7 months, range 4-11 years) and validation cohort (n = 78, 28 females; median 7 years, SD 4 years 5 months, range 4-12 years). A paediatric antibody prevalence in seizure (PAPS) score was created for one cohort and evaluated in the other. Seven variables were selected through univariate and multivariate analysis to create a PAPS score. RESULTS: One hundred and fifty-seven children who fulfilled the inclusion criteria were enrolled; 49 tested positive for antineuronal antibodies. The sensitivity and specificity of an APE score of 4 and greater were 92% and 22.2% respectively; the sensitivity and specificity of a PAPS score of 2.5 and greater were 83.3% and 77.8% respectively. The area under the curve was 0.832 (95% confidence interval = 0.743-0.921), which was significantly better than that for the APE score (p < 0.001). INTERPRETATION: The APE score had high sensitivity but low specificity in children. The PAPS score may be useful for determining the need for antineuronal antibody testing.

2.
Brain Sci ; 14(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38539632

RESUMEN

Hypoxic-ischemic brain injury induces metabolic dysfunction that ultimately leads to neuronal cell death. Astrocytes, a type of glial cell, play a key role in brain metabolism; however, their response to hypoxic-ischemic brain injury is not fully understood. Microglia were removed from murine primary mixed glial cultures to enrich astrocytes. Next, we explored genes whose expression is altered following oxygen-glucose deprivation using a microarray. Microarray analysis revealed that the expression of Nr4a1 and Nr4a3 is markedly increased in astrocyte-enriched cultures after 15 h of oxygen-glucose deprivation. The expression of both Nr4a1 and Nr4a3 was regulated by HIF-1α. At the protein level, NR4A1 was translocated from the nucleus to the cytoplasm following oxygen-glucose deprivation and co-localized with mitochondria in apoptotic cells; however, its localization was restored to the nucleus after reoxygenation. Oxygen-glucose deprivation causes an increase in NR4A1 mRNA in astrocytes as well as its nuclear to cytoplasmic transfer. Furthermore, reoxygenation enhances NR4A1 transcription and promotes its nuclear translocation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA