Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ultrastruct Pathol ; 48(2): 128-136, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38115187

RESUMEN

Radiation exposure is a major health concern due to bone involvement including mandible, causing deleterious effects on bone metabolism, and healing with an increasing risk of infection and osteoradionecrosis. This study aims to investigate the radiotherapy-induced microstructural changes in the human mandible by scanning electron microscopy (SEM). Mandibular cortical bone biopsies were obtained from control, irradiated, and patients with osteoradionecrosis (ORN). Bone samples were prepared for light microscopy and SEM. The SEM images were analyzed for the number of osteons, number of Haversian canal (HC), diameter of osteon (D.O), the diameter of HC (D.HC), osteonal wall thickness (O.W.Th), number of osteocytes, and number of osteocytic dendrites. The number of osteons, D.O, D.HC, O.W.Th, the number of osteocytes, and osteocytic dendrites were significantly decreased in both irradiated and ORN compared to controls (p < .05). The number of HCs decreased in irradiated and ORN bone compared to the control group. However, this was statistically not significant. The deleterious effect of radiation continues gradually altering the bone quality, structure, cellularity, and vascularity in the long term (>5 years mean radiation biopsy interval). The underlying microscopic damage in bone increases its susceptibility and contributes further to radiation-induced bone changes or even ORN.


Asunto(s)
Osteorradionecrosis , Humanos , Microscopía Electrónica de Rastreo , Osteorradionecrosis/etiología , Osteorradionecrosis/patología , Osteocitos/patología , Osteón , Mandíbula/patología
2.
Calcif Tissue Int ; 111(6): 547-558, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35978052

RESUMEN

Osteoid is a layer of new-formed bone that is deposited on the bone border during the process of new bone formation. This deposition process is crucial for bone tissue, and flaws in it can lead to bone diseases. Certain bone diseases, i.e. medication related osteonecrosis, are overexpressed in mandibular bone. Because mandibular bone presents different properties than other bone types, the data concerning osteoid formation in other bones are inapplicable for human-mandibular bone. Previously, the molecular distribution of other bone types has been presented using Fourier-transform infrared (FTIR) spectroscopy. However, the spatial distribution of molecular components of healthy-human-mandibular-bone osteoid in relation to histologic landmarks has not been previously presented and needs to be studied in order to understand diseases that occur human-mandibular bone. This study presents for the first time the variation in molecular distribution inside healthy-human-mandibular-bone osteoid by juxtaposing FTIR data with its corresponding histologic image obtained by autofluorescence imaging of its same bone section. During new bone formation, bone-forming cells produce an osteoid constituted primarily of type I collagen. It was observed that in mandibular bone, the collagen type I increases from the osteoblast line with the distance from the osteoblasts, indicating progressive accumulation of collagen during osteoid formation. Only later inside the collagen matrix, the osteoid starts to mineralize. When the mineralization starts, the collagen accumulation diminishes whereas the collagen maturation still continues. This chemical-apposition process in healthy mandibular bone will be used in future as a reference to understand different pathologic conditions that occur in human-mandibular bone.


Asunto(s)
Enfermedades Óseas , Huesos , Humanos , Matriz Ósea , Osteoblastos , Colágeno , Calcificación Fisiológica
3.
Ultrastruct Pathol ; 45(4-5): 276-285, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34423726

RESUMEN

Radiation therapy may compromise the quality of bone around dental implants, and its ability to regenerate, remodel, and revascularize. This study aimed to describe the irradiation effect on the bone microstructure of the mandible using dental implants in a canine model. Five beagle dogs were exposed to 40 Gy fractionated radiation. In total, 20 dental implants were inserted, two in the irradiated and two in the non-irradiated side. The mandible bone blocks were subjected to 3D micro-computed tomography (µCT) imaging, later evaluated histomorphometrically by light microscopy and scanning electron microscopy. Alterations in irradiated bone were observed under µCT imaging showing an increased anisotropy, porosity, and pore volume. Bone surface-to-bone volume decreased. The bone to implant contact index was significantly reduced in the irradiated bone (75.6% ± 5.8%) as compared to the non-irradiated bone (85.1% ± 6.8%). In the irradiated mandible, osteocytes with their filopodial processes, the bone beneath the periosteum, and subperiosteal veins showed structural differences but were not significant, whereas the diameter of Haversian canals were smaller statistical significant as compared to the control side. The study highlights that radiation dosage of fractioned 40 Gy causes alterations in the alveolar bone microstructure with compatible osseointegration and clinically stable dental implants.


Asunto(s)
Implantes Dentales , Animales , Perros , Mandíbula/diagnóstico por imagen , Oseointegración , Osteocitos , Microtomografía por Rayos X
4.
Exp Cell Res ; 376(2): 149-158, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30763584

RESUMEN

Extracellular vesicles (EVs) and their interactions with recipient cells constitute a rapidly growing research area. However, due to the limitations in current methodologies, the mechanisms of these interactions are still unclear. Microscopic studies of EVs are challenging, because their typical diameter is near the resolution limit of light microscopy, and electron microscopy has restricted possibilities for protein labelling. The objective of this study was to combine these two techniques to demonstrate in detail the interactions of EVs by recipient cells. Hyaluronan synthase 3 (HAS3) is an integral transmembrane protein that is enriched in EVs. In this work, GFP-HAS3 was utilized to study the interactions of EVs with the recipient cells. Surprisingly, confocal analysis correlation with scanning electron microscopy (SEM) revealed that most of the EVs were indeed lying on the recipient cell's plasma membrane, while the level of EV-derived intracellular signal was low. Immunoelectron microscopy supported this finding. Furthermore, hyaluronan oligosaccharides decreased the numbers of bound EVs, suggesting that CD44 participates in the regulation of their binding. This study indicates that correlative light and electron microscopy is a reliable method to analyze EV interactions with recipient cells. Detailed 3D confocal imaging of EV carrying a GFP-label on their plasma membrane combined with high-resolution electron microscopy provides significantly more information than either of the techniques alone. In the future studies it is crucial to utilize these techniques and their combinations to solve in detail the ambiguous fate of EV in target cells. Furthermore, live cell imaging at high resolution will be required to obtain definite answers on the detailed mechanisms of binding, fusion and endocytosis of EVs.


Asunto(s)
Vesículas Extracelulares/fisiología , Vesículas Extracelulares/ultraestructura , Microscopía Electrónica , Microscopía , Línea Celular Tumoral , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes , Humanos , Receptores de Hialuranos/metabolismo , Hialuronano Sintasas/metabolismo , Microscopía Electrónica/instrumentación , Microscopía Electrónica/métodos , Microscopía Electrónica de Rastreo , Microscopía Inmunoelectrónica
5.
Ultrastruct Pathol ; 43(4-5): 184-189, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31680599

RESUMEN

The purpose of the present study was to demonstrate the localization of transmembrane mucin MUC1 on the outer layer of oral mucosal cells and the involvement of apical cell surface microplicae (MPL) in bioadhesion of MUC1. Tissue samples of six healthy subjects were obtained. First, the presence of MUC1 was examined with an immunohistochemical method using a monoclonal MUC1 antigen called HFMG1. Second, the localization of MUC1 was examined with immuno-scanning electron microscopy. Immunohistochemically, high intense staining for MUC1 (antigen HFMG1) was detected in the epithelial superficial layers. In the superficial layer, intense MUC1 expression was seen predominantly on the apical cell surface. On the apical epithelial cells, MUC1 was associated predominantly with MPL towards the oral cavity. The novelty of the results of the present study is that MPL serves a harbor of MUC1 in superficial epithelial cells towards the oral cavity. It is speculated that the transmembrane MUC1 is one component of the "oral mucosal barrier complex" representing a signaling pathway between saliva and mucosal cells.Abbreviations: MUC1: mucin1; MAM: membrane-anchored mucin; OMBC: oral mucosal barrier complex; LM: light microscopy; TEM: transmission electron microscopy; SEM: scanning electron microscopy; iSEM: immuno-scanning electron microscopy; MPL: microplicae.


Asunto(s)
Mucosa Bucal/metabolismo , Mucosa Bucal/ultraestructura , Mucina-1/metabolismo , Mucina-1/ultraestructura , Adulto , Anciano , Femenino , Humanos , Masculino , Microscopía Electrónica , Persona de Mediana Edad
6.
Int J Mol Sci ; 20(15)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31375001

RESUMEN

In diabetic patients, high blood glucose induces alterations in retinal function and can lead to visual impairment due to diabetic retinopathy. In immortalized retinal pigment epithelial (RPE) cultures, high glucose concentrations are shown to lead to impairment in epithelial barrier properties. For the first time, the induced pluripotent stem-cell-derived retinal pigment epithelium (hiPSC-RPE) cell lines derived from type 2 diabetics and healthy control patients were utilized to assess the effects of glucose concentration on the cellular functionality. We show that both type 2 diabetic and healthy control hiPSC-RPE lines differentiate and mature well, both in high and normal glucose concentrations, express RPE specific genes, secrete pigment epithelium derived factor, and form a polarized cell layer. Here, type 2 diabetic hiPSC-RPE cells had a decreased barrier function compared to controls. Added insulin increased the epithelial cell layer tightness in normal glucose concentrations, and the effect was more evident in type 2 diabetics than in healthy control hiPSC-RPE cells. In addition, the preliminary functionality assessments showed that type 2 diabetic hiPSC-RPE cells had attenuated autophagy detected via ubiquitin-binding protein p62/Sequestosome-1 (p62/SQSTM1) accumulation, and lowered pro- matrix metalloproteinase 2 (proMMP2) as well as increased pro-MMP9 secretion. These results suggest that the cellular ability to tolerate stress is possibly decreased in type 2 diabetic RPE cells.


Asunto(s)
Diabetes Mellitus Tipo 2/patología , Retinopatía Diabética/patología , Células Madre Pluripotentes Inducidas/patología , Epitelio Pigmentado de la Retina/patología , Línea Celular , Células Cultivadas , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Retinopatía Diabética/etiología , Retinopatía Diabética/metabolismo , Glucosa/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Permeabilidad , Epitelio Pigmentado de la Retina/metabolismo
7.
Ultrastruct Pathol ; 42(2): 124-132, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29424622

RESUMEN

OBJECTIVES: The aim of the present study is to investigate the morphological and cellular changes in dental extraction socket that has been irradiated after the tooth extraction and to describe morphological characteristics of the osteocytes and osteocyte-lacunar-canalicular network (LCN) by scanning electron microscopy (SEM). MATERIAL AND METHODS: Five beagle dogs aged 1-2 years were used in this study. One side of each mandible was irradiated in two sessions and the other side of mandible (non-irradiated) served as a control. The mandible bone blocks were processed by bulk staining en bloc in basic fuchsin and the specimens were embedded routinely in polymethyl methacrylate resin without preliminary decalcification. All blocks were subjected to micro-CT imaging, after that the specimens were prepared for light microscopy and SEM. RESULTS: Alterations in bone macrostructure are minimal in irradiated bone, but the changes in LCN are clear. In the area of the tooth extraction socket, the connections of osteocytes to the vessels and to neighboring osteocytes were not observed both in irradiated and nonirradiated bone. However, osteoclasts were located in the bone surface entering inside to the bone between osteons. In the lamellar bone of lateral sides, a decrease in canalicular connections between osteocytes and periosteum was found in irradiated bone as compared to the non-irradiated side. CONCLUSIONS: The novelty of the present study is that radiation disrupts osteocytes and their dendrites.


Asunto(s)
Proceso Alveolar/efectos de la radiación , Remodelación Ósea/efectos de la radiación , Mandíbula/efectos de la radiación , Osteocitos/efectos de la radiación , Extracción Dental/efectos adversos , Proceso Alveolar/patología , Proceso Alveolar/ultraestructura , Animales , Modelos Animales de Enfermedad , Perros , Mandíbula/patología , Mandíbula/ultraestructura , Microscopía Electrónica de Rastreo , Osteocitos/patología , Osteocitos/ultraestructura
8.
Ultrastruct Pathol ; 42(1): 74-79, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29192847

RESUMEN

The aim of this study was to define the acid-etching technique for bone samples embedded in polymethyl metacrylate (PMMA) in order to visualize the osteocyte lacuno-canalicular network (LCN) for scanning electron microscopy (SEM). Human jaw bone tissue samples (N = 18) were collected from the study population consisting of patients having received dental implant surgery. After collection, the bone samples were fixed in 70% ethanol and non-decalcified samples embedded routinely into polymethyl metacrylate (PMMA). The PMMA embedded specimens were acid-etched in either 9 or 37% phosphoric acid (PA) and prepared for SEM for further analysis. PMMA embedded bone specimens acid-etched by 9% PA concentration accomplishes the most informative and favorable visualization of the LCN to be observed by SEM. Etching of PMMA embedded specimens is recommendable to start with 30 s or 40 s etching duration in order to find the proper etching duration for the samples examined. Visualizing osteocytes and LCN provides a tool to study bone structure that reflects changes in bone metabolism and diseases related to bone tissue. By proper etching protocol of non-decalcified and using scanning electron microscope it is possible to visualize the morphology of osteocytes and the network supporting vitality of bone tissue.


Asunto(s)
Huesos/ultraestructura , Técnicas de Preparación Histocitológica/métodos , Microscopía Electrónica de Rastreo/métodos , Osteocitos/ultraestructura , Humanos
9.
J Oral Pathol Med ; 46(10): 1004-1010, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28865083

RESUMEN

OBJECTIVES: The microplicae is a typical structure of the epithelial cell surface of the oral mucosa. The cell surface is potentially of great significance, as it provides the underlying basis for the protective function of the salivary pellicle. The aim of this study was to investigate whether radiation therapy affects the surface morphology of the superficial cells of the human oral mucosa in patients who have received radiotherapy for oral cancer. MATERIAL AND METHODS: Oral mucosal tissue samples from 91 patients were collected during dental implant surgery or ablative surgery. Study group 1 consisted of 28 patients who underwent dental implant surgery after radiotherapy. Group 2 consisted of five patients who developed osteoradionecrosis. Group 3 consisted of eight oral cancer patients without radiotherapy. Group 4 consisted of 50 clinically healthy subjects as controls. The samples were studied with scanning electron microscopy and compared with both light and transmission electron micrographs. RESULTS: Radiation therapy (RT) induces breakage and destruction in the microplicae morphology and declines the density of the microplicae surface structures. In some of the irradiated cells, the microplicae were completely vanished, especially in patients who developed osteoradionecrosis. In non-irradiated tissue, the microplicae of the superficial epithelial cells were intact in all cases. CONCLUSION: Scanning electron microscopy, in contrast to light microscopy, appears to be a useful tool to reveal the condition of superficial oral mucosal cells. In respect of the possible pathogenesis of osteoradionecrosis, the radiation-induced damage of the microplicae and its influence on the mucosal salivary pellicle is discussed.


Asunto(s)
Células Epiteliales/efectos de la radiación , Células Epiteliales/ultraestructura , Mucosa Bucal/citología , Neoplasias de la Boca/radioterapia , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Microscopía , Microscopía Electrónica de Rastreo , Persona de Mediana Edad
10.
Int J Mol Sci ; 18(5)2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28534814

RESUMEN

The impairment of autophagic and proteasomal cleansing together with changes in pigmentation has been documented in retinal pigment epithelial (RPE) cell degeneration. However, the function and co-operation of these mechanisms in melanosome-containing RPE cells is still unclear. We show that inhibition of proteasomal degradation with MG-132 or autophagy with bafilomycin A1 increased the accumulation of premelanosomes and autophagic structures in human embryonic stem cell (hESC)-derived RPE cells. Consequently, upregulation of the autophagy marker p62 (also known as sequestosome-1, SQSTM1) was confirmed in Western blot and perinuclear staining. Interestingly, cells treated with the adenosine monophosphatedependent protein kinase activator, AICAR (5-Aminoimidazole-4-carboxamide ribonucleotide), decreased the proteasome inhibitor-induced accumulation of premelanosomes, increased the amount of autophagosomes and eradicated the protein expression of p62 and LC3 (microtubule-associated protein 1A/1B-light chain 3). These results revealed that autophagic machinery is functional in hESC-RPE cells and may regulate cellular pigmentation with proteasomes.


Asunto(s)
Autofagia/efectos de los fármacos , Células Madre Embrionarias Humanas/citología , Leupeptinas/farmacología , Macrólidos/farmacología , Pigmentación/efectos de los fármacos , Inhibidores de Proteasoma/farmacología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Línea Celular , Humanos , Melanosomas/efectos de los fármacos , Melanosomas/metabolismo , Epitelio Pigmentado de la Retina/citología
11.
Exp Cell Res ; 337(2): 179-91, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26162854

RESUMEN

Previous studies have shown that overexpression of enzymatically active GFP-HAS induces the growth of long, slender protrusions that share many features of both filopodia and microvilli. These protrusions are dependent on continuing hyaluronan synthesis, and disrupt upon digestion of hyaluronan by hyaluronidase. However, complete understanding of their nature is still missing. This work shows that the protrusions on rat peritoneal surface are ultrastructurally indistinguishable from those induced by GFP-HAS3 in MCF-7 cells. Analysis of the actin-associated proteins villin, ezrin, espin, fascin, and Myo10 indicated that the HAS3-induced protrusions share most cytoskeletal features with filopodia, but they do not require adherence to the substratum like traditional filopodia. GFP-HAS3 overexpression was found to markedly enhance filamentous actin in the protrusions and their cortical basis. Analysis of the protrusion dynamics after enzymatic digestion of hyaluronan revealed that while GFP-HAS3 escape from the protrusions and the protrusion collapse takes place immediately, the complete retraction of the protrusions occurs more slowly. This finding also suggests that hyaluronan chain maintains HAS3 in the plasma membrane. The results of this work suggest that protrusions similar to those of HAS3 overexpressing cells in vitro exist also in cells with active hyaluronan synthesis in vivo. These protrusions are similar to common filopodia but are independent of substratum attachment due to the extracellular scaffolding by the hyaluronan coat that accounts for the growth and maintenance of these structures, previously associated to invasion, adhesion and multidrug resistance.


Asunto(s)
Extensiones de la Superficie Celular/ultraestructura , Citoesqueleto/ultraestructura , Epitelio/ultraestructura , Glucuronosiltransferasa/metabolismo , Microvellosidades/ultraestructura , Seudópodos/ultraestructura , Animales , Membrana Celular/metabolismo , Extensiones de la Superficie Celular/metabolismo , Citoesqueleto/metabolismo , Epitelio/metabolismo , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Hialuronano Sintasas , Ácido Hialurónico/metabolismo , Células MCF-7 , Microscopía Confocal , Microscopía Electrónica de Transmisión , Microvellosidades/metabolismo , Seudópodos/metabolismo , Ratas
12.
Biomed Eng Online ; 14: 74, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26219663

RESUMEN

BACKGROUND: Bone cement augmentation is commonly used to improve the fixation stability of orthopaedic implants in osteoporotic bone. The aim of this study was to evaluate the effect of novel bone cements on the stability of bone screw fixation by biomechanical testing and to compare them with a conventional Simplex(®)P bone cement and requirements of the standards. METHODS: Basic biomechanical properties were compared with standard tests. Adhesion of bone cements were tested with polished, glass blasted and corundum blasted stainless steel surfaces. Screw pullout testing with/without cement was carried out using a synthetic bone model and cancellous and cortical bone screws. RESULTS: All the tested bone cements fulfilled the requirements of the standard for biomechanical properties and improved the screw fixation stability. Even a threefold increase in shear and tensile strength was achieved with increasing surface roughness. The augmentation improved the screw pullout force compared to fixation without augmentation, 1.2-5.7 times depending on the cement and the screw type. The good biomechanical properties of novel bone cement for osteoporotic bone were confirmed by experimental testing. CONCLUSION: Medium viscosity of the bone cements allowed easy handling and well-controlled penetration of bone cement into osteoporotic bone. By proper parameters and procedures it is possible to achieve biomechanically stable fixation in osteoporotic bone. Based on this study, novel biostable bone cements are very potential biomaterials to enhance bone screw fixation in osteoporotic bone. Novel bone cement is easy to use without hand mixing using a dual syringe and thus makes it possibility to use it as required during the operation.


Asunto(s)
Cementos para Huesos , Tornillos Óseos , Ensayo de Materiales , Fenómenos Mecánicos , Adhesividad , Fuerza Compresiva , Módulo de Elasticidad , Fracturas Osteoporóticas/cirugía
13.
Mycorrhiza ; 25(3): 195-204, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25179801

RESUMEN

Tricholoma matsutake is an ectomycorrhizal fungus that forms commercially important mushrooms in coniferous forests. In this study, we explored the ability of T. matsutake to form mycorrhizae with Pinus sylvestris by inoculating emblings produced through somatic embryogenesis (SE) in an aseptic culture system. Two months after inoculation, clones with less phenolic compounds in the tissue culture phase formed mycorrhizae with T. matsutake, while clones containing more phenols did not. Effects of inoculation on embling growth varied among clones; two of the four tested showed a significant increase in biomass and two had a significant increase in root density. In addition, results suggest that clones forming well-developed mycorrhizae absorbed more Al, Fe, Na, P, and Zn after 8 weeks of inoculation. This study illustrates the value of SE materials in experimental work concerning T. matsutake as well as the role played by phenolic compounds in host plant response to infection by mycorrhizal fungi.


Asunto(s)
Micorrizas/fisiología , Pinus sylvestris/microbiología , Tricholoma/fisiología , Técnicas de Cultivo de Célula , Fenol/análisis , Fenol/metabolismo , Pinus sylvestris/química , Pinus sylvestris/embriología , Pinus sylvestris/metabolismo
14.
Exp Eye Res ; 120: 82-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24462278

RESUMEN

Preservatives have been for a long time known to cause detrimental effects on ocular surface. Cationorm, a preservative-free compound with electrostatic properties is a novel way to solve the problems encountered with traditional benzalkonium chloride (BAK)-containing eye drops. The aim of this study was to evaluate tolerability of the preservative-free cationic emulsion Cationorm in vitro on corneal epithelial cells. The human corneal epithelial cell (HCE-2) culture line was used to study cellular morphology, cytotoxicity and inflammatory responses after Cationorm diluted 1/10 exposure for 5, 15 and 30 min. Exposures to Systane diluted 1/10 with polyquaternium-1/polidronium chloride 0.001% as preservative, BAK 0.001% or C16 (0.0002%) and normal cell culture medium served as positive and negative references. Cell viability was determined by measuring the release of lactate dehydrogenase (LDH) and mitochondrial dehydrogenase activity was evaluated using 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The possible induction of apoptosis was analyzed by measuring the activity of caspase-3, and Cell Counting Kit-8 (CCK-8) was used to evaluate the number of viable cells after the exposure to test compounds. Furthermore, the tendency of the test compounds to produce inflammatory reaction was determined by analyzing the production of proinflammatory cytokines IL-6 and IL-8, and DNA binding of the p65 subunit of transcription factor NF-κB was measured from cell lysates. HCE-2 cells showed no morphological changes after the exposure to Cationorm, but in cells exposed to BAK, clear cytoplasm vacuolization and loose cell-cell contacts were observed in transmission (TEM) or scanning (SEM) electron microscopic analyses. Cell viability, as measured with the release of LDH, indicated a time dependent increase in LDH expression after exposure to all test compounds but especially with BAK. Moreover, Cationorm and BAK time-dependently decreased the mitochondrial metabolism to 73% with Cationorm and 53% with BAK from that of the control cells after 30 min exposure in MTT assay. BAK was the only test compound having clear adverse effects on the cell number and metabolism in CCK-8 assay. The activity of caspase-3 did not show significant differences between the groups. Inflammatory response after exposure to Cationorm was significantly lower than after exposure to BAK. There were no significant differences in NF-κB activity between the groups. Diluted Cationorm and Systane with polyquaternium-1/polidronium chloride 0.001% showed good tolerability on HCE-2 cells and thereby provide a clear improvement when compared to BAK-containing eye drop formulations.


Asunto(s)
Epitelio Corneal/efectos de los fármacos , Alcoholes Grasos/farmacología , Compuestos de Amonio Cuaternario/farmacología , Tensoactivos/farmacología , Compuestos de Benzalconio/farmacología , Caspasa 3/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Combinación de Medicamentos , Emulsiones/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Epitelio Corneal/metabolismo , Epitelio Corneal/ultraestructura , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Polímeros/farmacología , Alcohol Polivinílico/farmacología , Povidona/farmacología , Conservadores Farmacéuticos/farmacología
15.
Ultrastruct Pathol ; 38(1): 6-12, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23957563

RESUMEN

BACKGROUND: The apical cell membrane of the oral mucosa adjacent to the saliva interface is thrown into membrane folds, termed microplicae (MPL) with variation in morphology. The present study classifies morphological changes undergone by MPL into qualitative and quantitative categories. MATERIAL AND METHODS: Oral mucosal specimens were obtained from 32 healthy patients. Half of each specimen was prepared routinely for light microscopy, and the other part for scanning and transmission electron microscopy. Different measurements of cell structure were presented: the density of MPL, the width and height of MPL, the width of furrows between two adjacent MPL and the distance of the centre of MPL. Morphometric measurements were obtained using a semiautomatic ImageJ analysis software (W Rasband, National Institutes of Health, Bethesda, MD). RESULTS: Parallel and branching MPL was common observation in the area of lining mucosa and in the tongue between the filiform papillae. The density of MPL was higher in the cells of the buccal mucosa than in the cells of the tongue, 43.69 + 11.43% and 31.68 + 10.32%, respectively. The difference was significant (p < 0.001). The width of MPL was 0.16 µm in cells of the buccal mucosa and 0.12 µm in cells of the tongue. CONCLUSIONS: Our findings support the idea that MPL structure is a determining factor for the functionality of the oral epithelium since the values of the MPL were kept relatively stable. The role of MPL structure of the oral mucosal cells is discussed.


Asunto(s)
Células Epiteliales/ultraestructura , Mucosa Bucal/ultraestructura , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Adulto Joven
16.
Sci Total Environ ; 940: 173666, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-38823697

RESUMEN

We explored the presence of microplastics in the Finnish Arctic Sámi home area. A dialogue between Indigenous knowledge and scientific field work produced data about microplastics in remote wilderness aquatic ecosystems. Methods included geographical Indigenous knowledge analysis, water sampling with fraction filtration, and imaging Fourier transform infrared spectroscopy. The MPs found were small; the mean particle size was 126 ± 121 µm. Particle concentrations of MPs in freshwater and marine samples varied between 45 and 423 MPs m-3 and the most common polymer types were polyethylene, polypropylene, and polyethylene terephthalate. In conclusion, because microplastics are present even in the wilderness areas, their abundance should be monitored to assess plastic pollution in the relatively pristine Arctic environments. Sámi Indigenous knowledge proved to be a beneficial and important initiator, because locals recognize the possible sources and transport pathways of plastic litter, and practical sampling sites in the complex freshwater systems of the area.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , Contaminantes Químicos del Agua , Microplásticos/análisis , Regiones Árticas , Finlandia , Contaminantes Químicos del Agua/análisis , Agua Dulce/química , Plásticos/análisis
17.
Sci Total Environ ; 925: 171821, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38513866

RESUMEN

Microplastic (MP) pollution is a persisting global problem. Accurate analysis is essential in quantifying the effects of microplastic pollution and develop novel technologies that reliably and reproducibly measure microplastic content in various samples. The most common methods for this are FTIR and Raman spectroscopy. Coloured, standardized beads are often used for method validation tests, which limits the conclusions to a very specific case rarely observed in the natural environment. This study focuses on the preparation of reference micro- and nanoplastics via cryogenic milling and shows their use for FTIR and Raman method validation studies. MPs can now be reproducibly milled from various plastics, offering the advantages of a better representation of MPs in real environment. Moreover, this study highlights issues with the current detection methods, up to now considered as the most reliable ones for MP detection and identification. Such issues, e.g. misidentification, will need to be addressed in the future. Additionally, milled MPs were used in experiments with commercial high-resolution imaging device, enabling a possible in-situ optical detection of microplastics. These experiments represent a step forward in understanding MPs in a water sample and provide a basis for a more accurate detection and identification directly from water, which would considerably reduce the time of analysis.

18.
Sci Total Environ ; 867: 161511, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36632898

RESUMEN

Flying insects are potential mobile samplers of airborne particulate matter (PM). However, current knowledge on their susceptibility to PM is limited to pollinators. Insects' capacity for particle surface accumulation depends on the lifestyle, structure of the body integuments, and behavioral patterns. Here, we investigate how two species of flying omnivorous insects from the genus Vespula, possessing direct interactions with air, soil, plants, and herbivores, indicate industrial pollution by accumulating coarse (PM10) and fine (PM2.5) particles on their bodies. The internal accumulation of particles in wasps' gut tissues is assessed considering heavy metals exposure to reveal and discuss the potential magnitude of ecotoxicological risks. Female individuals of Vespula vulgaris and V. germanica were sampled with a hand-netting near to Harjavalta Cu-Ni smelter and in the control areas in southwestern Finland. They were analyzed with light microscopy (LM), electron microscopy (SEM, TEM), and energy-dispersive X-ray spectroscopy (EDX) methods. Near to the smelter, wasps trapped significantly more particles, which were of bigger size and their surface optical density was higher. Vespula vulgaris accumulated larger particles than V. germanica, but that wasn't associated with morphological characteristics such as body size or hairiness. In both areas, accumulated surface PM carried clays and silicates. Only in polluted environments PM consistently contained metallic and nonmetallic particles (from high to moderate weight %) of Fe, Ni, Cu, and S - major pollutants emitted from the smelter. Wasps from industrially polluted areas carried significantly more granules in the columnar epithelial midgut cells. TEM-EDX analyses identified those structures were associated with metal ions such as Cr, Cu, Ni, and Fe. As epithelial gut cells accumulated metal particles, midgut confirmed as a barrier for metal exposure in wasps. External PM contamination in wasps is suggested as a qualitative, yet a natural and simple descriptor of local industrial emissions.


Asunto(s)
Contaminantes Atmosféricos , Metales Pesados , Avispas , Humanos , Animales , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Tamaño de la Partícula
19.
Eur J Pharm Biopharm ; 180: 161-169, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36122786

RESUMEN

Many active pharmaceutical ingredients (API) in development suffer from low aqueous solubilities. Instead of the crystal form, the amorphous state can be used to improve the API's apparent solubility. However, the amorphous state has a higher Gibb's free energy and is inherently unstable and tends to transform back to the more stable crystal form. In co-amorphous mixtures, phase separation needs to occur before there can be crystallization. The aim of this study was to devise a method to study amorphous-amorphous phase separation with high resolution imaging Fourier transform infrared (FTIR) spectroscopy with seven 1:1 M ratio API-API binary mixtures being examined. The binary mixtures were amorphized by melt-quenching and stored above their glass transition temperature (Tg) to monitor their phase separation. Thermodynamic properties (crystallization tendency, melting point (Tm) and Tg) of these mixtures were measured with differential scanning calorimetry (DSC) to verify the amorphization method and to assess the optimal storage temperature. The phase separation was examined with FTIR imaging in the transmission mode. Furthermore, measurements with two pure APIs were performed to ensure that the alterations occurring in the spectra were caused by phase separation not storage stress. In addition, the reproducibility of the imaging FTIR spectrometer was verified. The spectra were analyzed with principal component analysis (PCA) and a characteristic peak comparison method. Scatter-plots were produced from the amount of phase separated pixels in the measurement area as a way of visualizing the progress of phase separation. The results indicated that imaging with FTIR spectroscopy can produce reproducible results and the progress of phase separation can be detected as either a sigmoidal or as a start-to-finish linear pattern depending on the substances.


Asunto(s)
Espectroscopía Infrarroja por Transformada de Fourier , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Reproducibilidad de los Resultados , Rastreo Diferencial de Calorimetría , Solubilidad , Temperatura de Transición , Estabilidad de Medicamentos
20.
Appl Spectrosc ; 76(10): 1165-1173, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35684992

RESUMEN

Understanding the biochemical changes in irradiated human mandible after radiotherapy of cancer patients is critical for oral rehabilitation. The underlying mechanism for radiation-associated changes in the bone at the molecular level could lead to implant failure and osteoradionecrosis. The study aimed to assess the chemical composition and bone quality in irradiated human mandibular bone using Raman spectroscopy. A total of 33 bone biopsies from 16 control and 17 irradiated patients were included to quantify different biochemical parameters from the Raman spectra. The differences in bone mineral and matrix band intensities between control and irradiated groups were analyzed using unpaired Student's t-test with statistical significance at p < 0.05. Findings suggest that the intensity of the phosphate band is significantly decreased and the carbonate band is significantly increased in the irradiated group. Further, the mineral crystallinity and carbonate to phosphate ratio are increased. The mineral to matrix ratio is decreased in the irradiated group. Principal component analysis (PCA) based on the local radiation dose and biopsy time interval of irradiated samples did not show any specific classification between irradiation sub-groups. Irradiation disrupted the interaction and bonding between the organic matrix and hydroxyapatite minerals affecting the bone biochemical properties. However, the normal clinical appearance of irradiated bone would have been accompanied by underlying biochemical and microscopical changes which might result in radiation-induced delayed complications.


Asunto(s)
Mandíbula , Espectrometría Raman , Carbonatos , Durapatita/química , Humanos , Mandíbula/efectos de la radiación , Análisis de Componente Principal , Espectrometría Raman/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA