Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(32): e2206860120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523546

RESUMEN

Mbtd1 (mbt domain containing 1) encodes a nuclear protein containing a zinc finger domain and four malignant brain tumor (MBT) repeats. We previously generated Mbtd1-deficient mice and found that MBTD1 is highly expressed in fetal hematopoietic stem cells (HSCs) and sustains the number and function of fetal HSCs. However, since Mbtd1-deficient mice die soon after birth possibly due to skeletal abnormalities, its role in adult hematopoiesis remains unclear. To address this issue, we generated Mbtd1 conditional knockout mice and analyzed adult hematopoietic tissues deficient in Mbtd1. We observed that the numbers of HSCs and progenitors increased and Mbtd1-deficient HSCs exhibited hyperactive cell cycle, resulting in a defective response to exogenous stresses. Mechanistically, we found that MBTD1 directly binds to the promoter region of FoxO3a, encoding a forkhead protein essential for HSC quiescence, and interacts with components of TIP60 chromatin remodeling complex and other proteins involved in HSC and other stem cell functions. Restoration of FOXO3a activity in Mbtd1-deficient HSCs in vivo rescued cell cycle and pool size abnormalities. These findings indicate that MBTD1 is a critical regulator for HSC pool size and function, mainly through the maintenance of cell cycle quiescence by FOXO3a.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Animales , Ratones , Ciclo Celular/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción/metabolismo
2.
Blood ; 140(8): 875-888, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35709354

RESUMEN

Detailed genomic and epigenomic analyses of MECOM (the MDS1 and EVI1 complex locus) have revealed that inversion or translocation of chromosome 3 drives inv(3)/t(3;3) myeloid leukemias via structural rearrangement of an enhancer that upregulates transcription of EVI1. Here, we identify a novel, previously unannotated oncogenic RNA-splicing derived isoform of EVI1 that is frequently present in inv(3)/t(3;3) acute myeloid leukemia (AML) and directly contributes to leukemic transformation. This EVI1 isoform is generated by oncogenic mutations in the core RNA splicing factor SF3B1, which is mutated in >30% of inv(3)/t(3;3) myeloid neoplasm patients and thereby represents the single most commonly cooccurring genomic alteration in inv(3)/t(3;3) patients. SF3B1 mutations are statistically uniquely enriched in inv(3)/t(3;3) myeloid neoplasm patients and patient-derived cell lines compared with other forms of AML and promote mis-splicing of EVI1 generating an in-frame insertion of 6 amino acids at the 3' end of the second zinc finger domain of EVI1. Expression of this EVI1 splice variant enhanced the self-renewal of hematopoietic stem cells, and introduction of mutant SF3B1 in mice bearing the humanized inv(3)(q21q26) allele resulted in generation of this novel EVI1 isoform in mice and hastened leukemogenesis in vivo. The mutant SF3B1 spliceosome depends upon an exonic splicing enhancer within EVI1 exon 13 to promote usage of a cryptic branch point and aberrant 3' splice site within intron 12 resulting in the generation of this isoform. These data provide a mechanistic basis for the frequent cooccurrence of SF3B1 mutations as well as new insights into the pathogenesis of myeloid leukemias harboring inv(3)/t(3;3).


Asunto(s)
Leucemia Mieloide Aguda , Proto-Oncogenes , Animales , Inversión Cromosómica , Cromosomas Humanos Par 3/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Leucemia Mieloide Aguda/patología , Proteína del Locus del Complejo MDS1 y EV11/genética , Ratones , Proto-Oncogenes/genética , Factores de Transcripción/metabolismo
3.
Blood ; 137(7): 908-922, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33174606

RESUMEN

Epigenetic regulation is essential for the maintenance of the hematopoietic system, and its deregulation is implicated in hematopoietic disorders. In this study, UTX, a demethylase for lysine 27 on histone H3 (H3K27) and a component of COMPASS-like and SWI/SNF complexes, played an essential role in the hematopoietic system by globally regulating aging-associated genes. Utx-deficient (UtxΔ/Δ) mice exhibited myeloid skewing with dysplasia, extramedullary hematopoiesis, impaired hematopoietic reconstituting ability, and increased susceptibility to leukemia, which are the hallmarks of hematopoietic aging. RNA-sequencing (RNA-seq) analysis revealed that Utx deficiency converted the gene expression profiles of young hematopoietic stem-progenitor cells (HSPCs) to those of aged HSPCs. Utx expression in hematopoietic stem cells declined with age, and UtxΔ/Δ HSPCs exhibited increased expression of an aging-associated marker, accumulation of reactive oxygen species, and impaired repair of DNA double-strand breaks. Pathway and chromatin immunoprecipitation analyses coupled with RNA-seq data indicated that UTX contributed to hematopoietic homeostasis mainly by maintaining the expression of genes downregulated with aging via demethylase-dependent and -independent epigenetic programming. Of note, comparison of pathway changes in UtxΔ/Δ HSPCs, aged muscle stem cells, aged fibroblasts, and aged induced neurons showed substantial overlap, strongly suggesting common aging mechanisms among different tissue stem cells.


Asunto(s)
Envejecimiento/genética , Regulación de la Expresión Génica/genética , Hematopoyesis/genética , Sistema Hematopoyético/fisiología , Código de Histonas/genética , Histona Demetilasas/fisiología , Animales , Senescencia Celular/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Femenino , Predisposición Genética a la Enfermedad , Hematopoyesis Extramedular , Histona Demetilasas/deficiencia , Histona Demetilasas/genética , Reconstitución Inmune , Histona Demetilasas con Dominio de Jumonji/metabolismo , Leucemia Experimental/genética , Leucemia Experimental/virología , Masculino , Ratones , Ratones Noqueados , Virus de la Leucemia Murina de Moloney/fisiología , Células Mieloides/patología , Quimera por Radiación , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/metabolismo , Factores de Transcripción/metabolismo , Integración Viral
4.
FASEB J ; 36(12): e22662, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36412518

RESUMEN

Recent studies have demonstrated that epigenetic modifications are deeply involved in neurogenesis; however, the precise mechanisms remain largely unknown. To determine the role of UTX (also known as KDM6A), a demethylase of histone H3K27, in neural development, we generated Utx-deficient mice in neural stem/progenitor cells (NSPCs). Since Utx is an X chromosome-specific gene, the genotypes are sex-dependent; female mice lose both Utx alleles (UtxΔ/Δ ), and male mice lose one Utx allele yet retain one Uty allele, the counterpart of Utx on the Y chromosome (UtxΔ/Uty ). We found that UtxΔ/Δ mice exhibited fetal ventriculomegaly and died soon after birth. Immunofluorescence staining and EdU labeling revealed a significant increase in NSPCs and a significant decrease in intermediate-progenitor and differentiated neural cells. Molecular analyses revealed the downregulation of pathways related to DNA replication and increased H3K27me3 levels around the transcription start sites in UtxΔ/Δ NSPCs. These results indicate that UTX globally regulates the expression of genes required for proper neural development in NSPCs, and UTX deficiency leads to impaired cell cycle exit, reduced differentiation, and neonatal death. Interestingly, although UtxΔ/Uty mice survived the postnatal period, most died of hydrocephalus, a clinical feature of Kabuki syndrome, a congenital anomaly involving UTX mutations. Our findings provide novel insights into the role of histone modifiers in neural development and suggest that UtxΔ/Uty mice are a potential disease model for Kabuki syndrome.


Asunto(s)
Histonas , Hidrocefalia , Animales , Femenino , Masculino , Ratones , Desarrollo Fetal , Histona Demetilasas/genética , Hidrocefalia/genética , Neurogénesis , Células Madre , Células-Madre Neurales
6.
Sci Rep ; 14(1): 17987, 2024 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097652

RESUMEN

The genome is constantly exposed to DNA damage from endogenous and exogenous sources. Fine modulation of DNA repair, chromatin remodeling, and transcription factors is necessary for protecting genome integrity, but the precise mechanisms are still largely unclear. We found that after ionizing radiation (IR), global trimethylation of histone H3 at lysine 4 (H3K4me3) was decreased at an early (5 min) post-IR phase but increased at an intermediate (180 min) post-IR phase in both human and mouse hematopoietic cells. We demonstrated that PTIP, a component of the MLL histone methyltransferase complex, is required for H3K4me3 upregulation in the intermediate post-IR phase and promotes cell cycle arrest by epigenetically inducing a cell cycle inhibitor, PRDM1. In addition, we found that PTIP expression is specifically downregulated in acute myeloid leukemia patients. These findings collectively suggest that the PTIP-PRDM1 axis plays an essential role in proper DNA damage response and its deregulation contributes to leukemogenesis.


Asunto(s)
Puntos de Control del Ciclo Celular , Daño del ADN , Proteínas de Unión al ADN , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Animales , Humanos , Ratones , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Epigénesis Genética , Histonas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Radiación Ionizante , Regulación hacia Arriba
7.
Commun Biol ; 6(1): 1183, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985874

RESUMEN

Gastrointestinal tract organs harbor reserve cells, which are endowed with cellular plasticity and regenerate functional units in response to tissue damage. However, whether the reserve cells in gastrointestinal tract exist as long-term quiescent cells remain incompletely understood. In the present study, we systematically examine H2b-GFP label-retaining cells and identify a long-term slow-cycling population in the gastric corpus but not in other gastrointestinal organs. The label-retaining cells, which reside near the basal layers of the corpus, comprise a subpopulation of chief cells. The identified quiescent cells exhibit induction of Atf4 and its target genes including Atf3, a marker of paligenosis, and activation of the unfolded protein response, but do not show elevated expression of Troy, Lgr5, or Mist. External damage to the gastric mucosa induced by indomethacin treatment triggers proliferation of the quiescent Atf4+ population, indicating that the gastric corpus harbors a specific cell population that is primed to facilitate stomach regeneration.


Asunto(s)
Células Principales Gástricas , Células Principales Gástricas/metabolismo , Células Madre/metabolismo , Mucosa Gástrica , Células Epiteliales , Estómago
8.
Clin Cancer Res ; 26(8): 2065-2079, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32047002

RESUMEN

PURPOSE: Epigenetic deregulation is deeply implicated in the pathogenesis of bladder cancer. KDM6A (Lysine (K)-specific demethylase 6A) is a histone modifier frequently mutated in bladder cancer. However, the molecular mechanisms of how KDM6A deficiency contributes to bladder cancer development remains largely unknown. We hypothesized that clarification of the pathogenic mechanisms underlying KDM6A-mutated bladder cancer can help in designing new anticancer therapies. EXPERIMENTAL DESIGN: We generated mice lacking Kdm6a in the urothelium and crossed them with mice heterozygous for p53, whose mutation/deletion significantly overlaps with the KDM6A mutation in muscle-invasive bladder cancer (MIBC). In addition, BBN (N-butyl-N-(4-hydroxybutyl) nitrosamine), a cigarette smoke-like mutagen, was used as a tumor-promoting agent. Isolated urothelia were subjected to phenotypic, pathologic, molecular, and cellular analyses. The clinical relevance of our findings was further analyzed using genomic and clinical data of patients with MIBC. RESULTS: We found that Kdm6a deficiency activated cytokine and chemokine pathways, promoted M2 macrophage polarization, increased cancer stem cells and caused bladder cancer in cooperation with p53 haploinsufficiency. We also found that BBN treatment significantly enhanced the expression of proinflammatory molecules and accelerated disease development. Human bladder cancer samples with decreased KDM6A expression also showed activated proinflammatory pathways. Notably, dual inhibition of IL6 and chemokine (C-C motif) ligand 2, upregulated in response to Kdm6a deficiency, efficiently suppressed Kdm6a-deficient bladder cancer cell growth. CONCLUSIONS: Our findings provide insights into multistep carcinogenic processes of bladder cancer and suggest molecular targeted therapeutic approaches for patients with bladder cancer with KDM6A dysfunction.


Asunto(s)
Carcinogénesis/patología , Histona Demetilasas/fisiología , Inflamación/patología , Macrófagos/inmunología , Proteína p53 Supresora de Tumor/fisiología , Neoplasias de la Vejiga Urinaria/patología , Urotelio/patología , Animales , Carcinogénesis/genética , Carcinogénesis/inmunología , Bases de Datos Genéticas/estadística & datos numéricos , Modelos Animales de Enfermedad , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/metabolismo , Urotelio/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA