Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem A ; 120(46): 9305-9314, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27802060

RESUMEN

Various types of interactions between halogen (X) and π moiety (X-π interaction) including halogen bonding play important roles in forming the structures of biological, supramolecular, and nanomaterial systems containing halogens and aromatic rings. Furthermore, halogen molecules such as X2 and CX4 (X = Cl/Br) can be intercalated in graphite and bilayer graphene for doping and graphene functionalization/modification. Due to the X-π interactions, though recently highly studied, their structures are still hardly predictable. Here, using the coupled-cluster with single, double, and noniterative triple excitations (CCSD(T)), the Møller-Plesset second-order perturbation theory (MP2), and various flavors of density functional theory (DFT) methods, we study complexes of benzene (Bz) with halogen-containing molecules X2 and CX4 (X = Cl/Br) and analyze various components of the interaction energy using symmetry adapted perturbation theory (SAPT). As for the lowest energy conformers (S1), X2-Bz is found to have the T-shaped structure where the electropositive X atom-end of X2 is pointing to the electronegative midpoint of CC bond of the Bz ring, and CX4-Bz has the stacked structure. In addition to this CX4-Bz (S1), other low energy conformers of X2-Bz (S2/S3) and CX4-Bz (S2) are stabilized primarily by the dispersion interaction, whereas the electrostatic interaction is substantial. Most of the density functionals show noticeable deviations from the CCSD(T) complete basis set (CBS) limit binding energies, especially in the case of strongly halogen-bonded conformers of X2-Bz (S1), whereas the deviations are relatively small for CX4-Bz where the dispersion is more important. The halogen bond shows highly anisotropic electron density around halogen atoms and the DFT results are very sensitive to basis set. The unsatisfactory performance of many density functionals could be mainly due to less accurate exchange. This is evidenced from the good performance by the dispersion corrected hybrid and double hybrid functionals. B2GP-PLYP-D3 and PBE0-TS(Tkatchenko-Scheffler)/D3 are well suited to describe the X-π interactions adequately, close to the CCSD(T)/CBS binding energies (within ∼1 kJ/mol). This understanding would be useful to study diverse X-π interaction driven structures such as halogen containing compounds intercalated between 2-dimensional layers.

2.
Phys Chem Chem Phys ; 13(3): 991-1001, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21063580

RESUMEN

We have carried out extensive calculations for neutral, cationic protonated, anionic deprotonated phenol dimers. The structures and energetics of this system are determined by the delicate competition between H-bonding, H-π interaction and π-π interaction. Thus, the structures, binding energies and frequencies of the dimers are studied by using a variety of functionals of density functional theory (DFT) and Møller-Plesset second order perturbation theory (MP2) with medium and extended basis sets. The binding energies are compared with those of highly reliable coupled cluster theory with single, double, and perturbative triple excitations (CCSD(T)) at the complete basis set (CBS) limit. The neutral phenol dimer is unique in the sense that its experimental rotational constants have been measured. The geometry of the neutral phenol dimer is governed by the hydrogen bond formed by two hydroxyl groups and the H-π interaction between two aromatic rings, while the structure of the protonated/deprotonated phenol dimers is additionally governed by the electrostatic and induction effects due to the short strong hydrogen bond (SSHB) and the charges populated in the aromatic rings in the ionic systems. Our salient finding is the substantial differences in structure between neutral, protonated, and deprotonated phenol dimers. This is because the neutral dimer involves in both H(π)···O and H(π)···π interactions, the protonated dimer involves in H(π)···π interactions, and the deprotonated dimer involves in a strong H(π)···O interaction. It is important to compare the reliability of diverse computational approaches employed in quantum chemistry on the basis of the calculational results of this system. MP2 calculations using a small cc-pVDZ basis set give reasonable structures, but those using extended basis sets predict wrong π-stacked structures due to the overestimation of the dispersion energies of the π-π interactions. A few new DFT functionals with the empirical dispersion give reliable results consistent with the CCSD(T)/CBS results. The binding energies of the neutral, cationic protonated, and anionic deprotonated phenol dimers are estimated to be more than 28.5, 118.2, and 118.3 kJ mol(-1), respectively. The energy components of the intermolecular interactions for the neutral, protonated and deprotonated dimers are analyzed.


Asunto(s)
Fenol/química , Dimerización , Enlace de Hidrógeno , Modelos Químicos , Protones , Teoría Cuántica , Termodinámica
3.
Phys Chem Chem Phys ; 12(23): 6278-87, 2010 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-20405079

RESUMEN

Short Strong Hydrogen Bonds (SSHBs) play an important role in many fields of physics, chemistry and biology. Since it is known that SSHBs exist in many biological systems, the role of hydrogen bonding motifs has been particularly interesting in enzyme catalysis, bio-metabolism, protein folding and proton transport phenomena. To explore the characteristic features of neutral, anionic and cationic hydrogen bonds, we have carried out theoretical studies of diverse homogeneous and heterogeneous hydrogen bonded dimers including water, peroxides, alcohols, ethers, aldehydes, ketones, carboxylic acids, anhydrides, and nitriles. Geometry optimization and harmonic frequency calculations are performed at the levels of Density Functional Theory (DFT) and Møller-Plesset second order perturbation (MP2) theory. First principles Car-Parrinello molecular dynamics (CPMD) simulations are performed to obtain IR spectra derived from velocity- and dipole-autocorrelation functions. We find that the hydrogen bond energy is roughly inversely proportional to the fourth power of the r(O/N-H) distance. Namely, the polarization of the proton accepting O/N atom by the proton-donating H atom reflects most of the binding energy in these diverse cation/anion/neutral hydrogen bonds. The present study gives deeper insight into the nature of hydrogen-bonded dimers including SSHBs.


Asunto(s)
Aniones/química , Cationes/química , Dimerización , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Teoría Cuántica , Espectrofotometría Infrarroja , Termodinámica
4.
J Am Chem Soc ; 130(1): 103-12, 2008 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-18069831

RESUMEN

In contrast to the extensive theoretical investigation of the solvation phenomena, the dissolution phenomena have hardly been investigated theoretically. Upon the excitation of hydrated halides, which are important substances in atmospheric chemistry, an excess electron transfers from the anionic precursor (halide anion) to the solvent and is stabilized by the water cluster. This results in the dissociation of hydrated halides into halide radicals and electron-water clusters. Here we demonstrate the charge-transfer-to-solvent (CTTS)-driven femtosecond-scale dissolution dynamics for I-(H2O)n=2-5 clusters using excited state (ES) ab initio molecular dynamics (AIMD) simulations employing the complete-active-space self-consistent-field (CASSCF) method. This study shows that after the iodine radical is released from I-(H2O)n=2-5, a simple population decay is observed for small clusters (2

Asunto(s)
Yodo/química , Modelos Moleculares , Agua/química , Simulación por Computador , Electrones , Radicales Libres , Solubilidad
5.
Chemphyschem ; 9(4): 567-71, 2008 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-18286552

RESUMEN

Using high-level ab initio calculations and excited state ab initio molecular dynamics simulations, we show that hydrated iodic acids release hydrogen radicals and/or hydrogen molecules as well as iodine radicals upon excitation. Its photoreaction process involving charge transfer to the solvent takes place in four steps: 1) hydration of the acid, 2) charge transfer to water upon excitation of hydrated acid, 3) detachment of the neutral iodine atom, and 4) detachment of the hydrogen radical. The iodine detachment process from excited hydrated hydro-iodic acids is exothermic and the detachment of hydrogen radicals from hydrated hydronium radicals is spontaneous if the initial kinetic energy of the cluster is high enough to get over the activation barrier of the detachment. The complete release of the radicals can be understood in terms of kinetics. This study shows how the hydrogen and halogen radicals are dissociated and released from their hydrated acids. Simple experiments corroborate our predicted mechanism for the release of hydrogen molecules from iodic acid in water by ultraviolet light.


Asunto(s)
Ácidos/química , Compuestos de Yodo/química , Rayos Ultravioleta , Ácidos/efectos de la radiación , Simulación por Computador , Radicales Libres/química , Radicales Libres/efectos de la radiación , Hidrógeno/química , Hidrógeno/efectos de la radiación , Yodo/química , Yodo/efectos de la radiación , Compuestos de Yodo/efectos de la radiación , Modelos Químicos , Fotoquímica , Teoría Cuántica , Agua/química
6.
J Phys Chem A ; 112(24): 5502-8, 2008 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-18505248

RESUMEN

Despite the importance of water photolysis in atmospheric chemistry, its mechanism is not well understood. Two different mechanisms for water photolysis have been proposed. The first mechanism is driven by water photoexcitation, followed by the reaction of the active hydrogen radical with water clusters. The second mechanism is governed by the ionization process. Both photoexcited and photoionized mechanisms are complementary, which is elucidated by using excited-state ab initio molecular dynamics simulations based on complete active space self-consistent field approach and unrestricted Møller-Plesset second-order perturbation theory based Born-Oppenheimer molecular dynamics simulations.

7.
J Chem Theory Comput ; 9(1): 847-56, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26589075

RESUMEN

Excited dimers (excimers) formed by aromatic molecules are important in biological systems as well as in chemical sensing. The structure of many biological systems is governed by excimer formation. Since theoretical studies of such systems provide important information about mutual arrangement of aromatic molecules in structural biology, we carried out extensive calculations on the benzene excimer using EOM-CCSD, RI-CC2, CASPT2, and TD-DFT approaches. For the benzene excimer, we evaluate the reliability of the TD-DFT method based on the B3LYP, PBE, PBE0, and ωPBEh functionals. We extended the calculations to naphthalene, anthracene, and pyrene excimers. We find that nearly parallel stacked forms are the minimum energy structure. On the basis of the benzene to pyrene excimers, we might roughly estimate the equilibrium layer-to-layer distance for bilayer-long arenes in the first singlet excited state, which is predicted to be bound.

8.
J Chem Theory Comput ; 7(10): 3447-59, 2011 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-26598173

RESUMEN

We carried out extensive calculations of diverse inorganic acids interacting with a single water molecule, through a detailed analysis of many possible conformations. The optimized structures were obtained by using density functional theory (DFT) and the second order Møller-Plesset perturbation theory (MP2). For the most stable conformers, we calculated the interaction energies at the complete basis set (CBS) limit using coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The -OH stretching harmonic and anharmonic frequencies are provided as fingerprints of characteristic conformers. The zero-point energy (ZPE) uncorrected/corrected (ΔEe/ΔE0) interaction energies and the enthalpies/free energies (ΔHr/ΔGr at room temperature and 1 bar) are reported. Various comparisons are made between many diverse inorganic acids (HmXOn where X = B/N/P/Cl/Br/I, m = 1-3, and n = 0-4) as well as other simple inorganic acids. In many cases, we find that the dispersion-driven van der Waals interactions between X in inorganic acid molecules and O in water molecules as well as the X(+)···O(-) electrostatic interactions are important.

9.
J Chem Phys ; 128(3): 034304, 2008 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-18205495

RESUMEN

Structures of the ground state pyrrole-(H2O)n clusters are investigated using ab initio calculations. The charge-transfer driven femtosecond scale dynamics are studied with excited state ab initio molecular dynamics simulations employing the complete-active-space self-consistent-field method for pyrrole-(H2O)n clusters. Upon the excitation of these clusters, the charge density is located over the farthest water molecule which is repelled by the depleted pi-electron cloud of pyrrole ring, resulting in a highly polarized complex. For pyrrole-(H2O), the charge transfer is maximized (up to 0.34 a.u.) around approximately 100 fs and then oscillates. For pyrrole-(H2O)2, the initial charge transfer occurs through the space between the pyrrole and the pi H-bonded water molecule and then the charge transfer takes place from this water molecule to the sigma H-bonded water molecule. The total charge transfer from the pyrrole to the water molecules is maximized (up to 0.53 a.u.) around approximately 100 fs.

10.
J Chem Phys ; 127(16): 164311, 2007 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-17979342

RESUMEN

On the basis of density functional theory (DFT) and high level ab initio theory, we report the structures, binding energies, thermodynamic quantities, IR spectra, and electronic properties of the hydride anion hydrated by up to six water molecules. Ground state DFT molecular dynamics simulations (based on the Born-Oppenheimer potential surface) show that as the temperature increases, the surface-bound hydride anion changes to the internally bound structure. Car-Parrinello molecular dynamics simulations are also carried out for the spectral analysis of the monohydrated hydride. Excited-state ab initio molecular dynamics simulations show that the photoinduced charge-transfer-to-solvent phenomena are accompanied by the formation of the excess electron-water clusters and the detachment of the H radical from the clusters. The dynamics of the detachment process of a hydrogen radical upon the excitation is discussed.

11.
J Chem Phys ; 126(7): 074302, 2007 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-17328600

RESUMEN

The design of cesium-selective ionophores must include the nature of cesium-water interactions. The authors have carried out extensive ab initio and density functional theory calculations of hydrated cesium cations to obtain reasonably accurate energetics, thermodynamic quantities, and IR spectra. An extensive search was made to find the most stable structures. Since water...water interactions are important in the aqua-Cs+ clusters, the authors investigated the vibrational frequency shifts as a function of the number of water molecules and the frequency characteristics with and without the presence of outer-shell water molecules. The predicted vibrational frequencies were then compared with the infrared photodissociation spectra of argon-tagged hydrated cesium cluster ions. This comparison allowed the identification of specific hydrogen-bonding structures present in the experimental spectra.


Asunto(s)
Cesio/química , Modelos Químicos , Modelos Moleculares , Agua/química , Transferencia de Energía , Análisis Espectral , Termodinámica
12.
J Chem Phys ; 121(10): 4665-70, 2004 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-15332898

RESUMEN

Density functional and ab intio calculations are employed in order to understand the base dissociation of rubidium hydroxide by water molecules. The hydrated structures, stabilities, thermodynamic quantities, dissociation energies, infrared spectra, and electronic properties of RbOH(H2O)(n = 0-5) are investigated. With the successive addition of water molecules to RbOH, the Rb-OH bond lengthens significantly from 2.45 angstroms for n = 0 to 3.06 angstroms for n = 5. It is interesting to note that four water molecules are needed for the stable dissociation of RbOH (as an almost dissociate conformation) and five water molecules are needed for the complete dissociation without any Rb-OH stretch mode, in contrast to the same group base of CsOH which requires only three water molecules for an almost dissociate conformation and four water molecules for the complete dissociation.

13.
J Chem Phys ; 121(7): 3108-16, 2004 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15291621

RESUMEN

We have carried out ab initio and density functional theory calculations of hydrated rubidium cations. The calculations involve a detailed evaluation of the structures, thermodynamic properties, and IR spectra of several plausible conformers of Rb+ (H2O)(n=1-8) clusters. An extensive search was made to find out the most stable conformers. Since the water-water interactions are important in hydrated Rb+ complexes, we investigated the vibrational frequency shifts of the OH stretching modes depending on the number of water molecules and the presence/absence of outer-shell water molecules. The predicted harmonic and anharmonic vibrational frequencies of the aqua-Rb+ clusters reflect the H-bonding signature, and would be used in experimental identification of the hydrated structures of Rb+ cation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA