RESUMEN
This paper describes experimental analysis of atmospheric channel model of Geostationary Earth Orbit (GEO) satellite-to-ground optical link by utilizing the Laser Utilizing Communication Systems (LUCAS) onboard the optical data relay GEO satellite. Our research work examines the effect of misalignment fading and various atmospheric turbulence conditions. These analytical results clarify that atmospheric channel model is well fitted to theoretical distributions with misalignment fading under various turbulence regimes. We also evaluate several atmospheric channel characteristics, including coherence time, power spectral density and probability of fade, in various turbulence conditions.
RESUMEN
Free-space optical (FSO) systems are compulsory to realize high capacity and interference-free communication links from low-Earth orbit (LEO) satellite constellations as well as spacecraft and space stations to the Earth. To be integrated with high-capacity ground networks, the collected portion of the incident beam should be coupled into an optical fiber. To accurately evaluate the signal-to-noise ratio (SNR) and bit-error rate (BER) performance metrics, the probability density function (PDF) of fiber coupling efficiency (CE) must be determined. Previous studies have experimentally verified the CE PDF for a single-mode fiber, however, there is no such investigation for the CE PDF of a multi-mode fiber (MMF) in a LEO-to-ground FSO downlink. In this paper, for the first time, the CE PDF for a 200-µm MMF is experimentally investigated using data from an FSO downlink from the Small Optical Link for International Space Station (SOLISS) terminal to a 40-cm sub-aperture optical ground station (OGS) supported by a fine-tracking system. An average CE of 5.45 dB was also achieved given that the alignment between SOLISS and OGS was not optimal. In addition, using the angle-of-arrival (AoA) and received power data, the statistical characteristics such as channel coherence time, power spectral density, spectrogram, and PDFs of AoA, beam misalignments, and atmospheric turbulence-induced fluctuations are revealed and compared with the state-of-the-art theoretical background.
RESUMEN
In this paper, a theoretical investigation of the performance of a communication scenario where a geostationary-orbit satellite provides radio-frequency broadband access to the users through orthogonal-frequency-division multiplexing technology and has an optical feeder link is presented. The interface between the radio frequency and the optical parts is achieved by using radio-on-fiber technology for optical-electro and electro-optical conversion onboard and no further signal processing is required. The proposed scheme has significant potential, but presents limitations related to the noise. The noise in both forward and reverse links is described, and the system performance for an example scenario with 1280 MHz bandwidth for QPSK, 16QAM, and 64QAM subcarrier modulation is estimated. The obtained results show that under certain conditions regarding link budget and components choice, the proposed solution is feasible.
RESUMEN
Sunitinib is an effective treatment for patients with metastatic Renal Cell Carcinoma (mRCC) but ultimately resistance occurs. The aim of this study was to investigate sunitinib resistance in RCCs and to develop therapeutic combination strategies with targeted radioimmunotherapy (RIT). We studied two RCC models, analyzed Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) and AXL/MET expression and performed therapy studies in Balb/cnu/nu mice combining sunitinib and [177Lu]Lu-cG250 RIT (6.5 MBq/10 µg), specifically targeting RCC cells. pAXL and pMET were expressed in sunitinib-resistant SK-RC-52 and absent in sunitinib-sensitive NU12. NGS evaluation showed that expression of VEGFA, VEGFB, VEGFD, PGF and VEGFR1,2,3 was higher and expression of VEGFC and PDGFA was lower in NU12 than in SK-RC-52. Therapy studies combining sunitinib with [177Lu]Lu-cG250 RIT showed that the best response in mice with "resistant" SK-RC-52 tumors was observed with two cycles of Sunitinib and [177Lu]Lu-cG250 RIT, probably due to increased vascular permeability by sunitinib treatment. In the "sensitive" NU12 model, two cycles of [177Lu]Lu-cG250 RIT and two cycles of combination treatment were equally effective. Enhanced therapeutic efficacy was achieved when two agents ([177Lu]Lu-cG250 RIT and sunitinib) that on their own did not induce satisfactory response levels, are combined. Our findings provide a promising new therapeutic strategy for patients with advanced RCC.