Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(10): 2354-2371.e8, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34614413

RESUMEN

Monocytic-lineage inflammatory Ly6c+CD103+ dendritic cells (DCs) promote antitumor immunity, but these DCs are infrequent in tumors, even upon chemotherapy. Here, we examined how targeting pathways that inhibit the differentiation of inflammatory myeloid cells affect antitumor immunity. Pharmacologic inhibition of Bruton's tyrosine kinase (BTK) and the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) or deletion of Btk or Ido1 allowed robust differentiation of inflammatory Ly6c+CD103+ DCs during chemotherapy, promoting antitumor T cell responses and inhibiting tumor growth. Immature Ly6c+c-kit+ precursor cells had epigenetic profiles similar to conventional DC precursors; deletion of Btk or Ido1 promoted differentiation of these cells. Mechanistically, a BTK-IDO axis inhibited a tryptophan-sensitive differentiation pathway driven by GATOR2 and mTORC1, and disruption of the GATOR2 in monocyte-lineage precursors prevented differentiation into inflammatory DCs in vivo. IDO-expressing DCs and monocytic cells were present across a range of human tumors. Thus, a BTK-IDO axis represses differentiation of inflammatory DCs during chemotherapy, with implications for targeted therapies.


Asunto(s)
Diferenciación Celular/inmunología , Células Dendríticas/inmunología , Neoplasias/inmunología , Linfocitos T/inmunología , Agammaglobulinemia Tirosina Quinasa/inmunología , Agammaglobulinemia Tirosina Quinasa/metabolismo , Animales , Células Dendríticas/citología , Células Dendríticas/metabolismo , Femenino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Masculino , Ratones , Monocitos/citología , Monocitos/inmunología , Monocitos/metabolismo , Transducción de Señal/inmunología , Linfocitos T/metabolismo , Serina-Treonina Quinasas TOR/inmunología , Serina-Treonina Quinasas TOR/metabolismo
2.
Neurobiol Dis ; 191: 106404, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184014

RESUMEN

Aging is a major risk factor for multiple chronic disorders in the elderly population, including Alzheimer's disease (AD) and Osteoporosis. AD is a progressive neurodegenerative disease characterized by memory loss. In addition to dementia, several studies have shown that AD patients experience an increased rate of musculoskeletal co-morbidities, such as osteoporosis. Since tissue-specific macrophages contribute to both diseases, this study analyzed the microglia transcriptome of AD mice to determine a common gene signature involved in osteoclast biology. After comparing differentially regulated genes from GEO data sets (GSE93824 and GSE212277), there were 35 common upregulated genes and 89 common downregulated genes. Of these common genes, seven genes are known to play an important role in bone homeostasis. CSF1, SPP1, FAM20C, and Cst7 were upregulated and are associated with osteoclastogenesis and inflammation. Among the downregulated genes, LILRA6, MMP9, and COL18A1 are involved in bone formation and osteoclast regulation. We further validated some of these genes (CSF1, Cst7, and SPP1) in the cortex and the bone of AD mice models. The dysregulation of these microglial genes in AD might provide insights into the co-occurrence of AD and osteoporosis and offer potential therapeutic targets to combat disease progression.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Osteoporosis , Anciano , Humanos , Ratones , Animales , Enfermedad de Alzheimer/genética , Transcriptoma , Microglía , Osteoporosis/genética , Proteínas de Unión al Calcio/genética , Proteínas de la Matriz Extracelular
3.
Genet Med ; 26(4): 101070, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38376505

RESUMEN

Clinical cytogenomic studies of solid tumor samples are critical to the diagnosis, prognostication, and treatment selection for cancer patients. An overview of current cytogenomic techniques for solid tumor analysis is provided, including standards for sample preparation, clinical and technical considerations, and documentation of results. With the evolving technologies and their application in solid tumor analysis, these standards now include sequencing technology and optical genome mapping, in addition to the conventional cytogenomic methods, such as G-banded chromosome analysis, fluorescence in situ hybridization, and chromosomal microarray analysis. This updated Section E6.7-6.12 supersedes the previous Section E6.5-6.8 in Section E: Clinical Cytogenetics of the American College of Medical Genetics and Genomics Standards for Clinical Genetics Laboratories.


Asunto(s)
Genética Médica , Neoplasias , Humanos , Estados Unidos , Laboratorios , Hibridación Fluorescente in Situ/métodos , Aberraciones Cromosómicas , Neoplasias/diagnóstico , Neoplasias/genética , Cromosomas , Genómica
4.
Am J Hematol ; 99(4): 642-661, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38164980

RESUMEN

Optical Genome Mapping (OGM) is rapidly emerging as an exciting cytogenomic technology both for research and clinical purposes. In the last 2 years alone, multiple studies have demonstrated that OGM not only matches the diagnostic scope of conventional standard of care cytogenomic clinical testing but it also adds significant new information in certain cases. Since OGM consolidates the diagnostic benefits of multiple costly and laborious tests (e.g., karyotyping, fluorescence in situ hybridization, and chromosomal microarrays) in a single cost-effective assay, many clinical laboratories have started to consider utilizing OGM. In 2021, an international working group of early adopters of OGM who are experienced with routine clinical cytogenomic testing in patients with hematological neoplasms formed a consortium (International Consortium for OGM in Hematologic Malignancies, henceforth "the Consortium") to create a consensus framework for implementation of OGM in a clinical setting. The focus of the Consortium is to provide guidance for laboratories implementing OGM in three specific areas: validation, quality control and analysis and interpretation of variants. Since OGM is a complex technology with many variables, we felt that by consolidating our collective experience, we could provide a practical and useful tool for uniform implementation of OGM in hematologic malignancies with the ultimate goal of achieving globally accepted standards.


Asunto(s)
Neoplasias Hematológicas , Humanos , Hibridación Fluorescente in Situ , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Cariotipificación , Mapeo Cromosómico
5.
Hum Genet ; 142(4): 483-494, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36797380

RESUMEN

The molecular basis of Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome remains largely unknown. Pathogenic variants in WNT4 and HNF1B have been confirmed in a small percent of individuals. A variety of copy number variants have been reported, but causal gene(s) remain to be identified. We hypothesized that rare structural variants (SVs) would be present in some individuals with MRKH, which could explain the genetic basis of the syndrome. Large molecular weight DNA was extracted from lymphoblastoid cells from 87 individuals with MRKH and available parents. Optical genome mapping (OGM) was performed to identify SVs, which were confirmed by another method (quantitative PCR, chromosomal microarray, karyotype, or fluorescent in situ hybridization) when possible. Thirty-four SVs that overlapped coding regions of genes with potential involvement in MRKH were identified, 14 of which were confirmed by a second method. These 14 SVs were present in 17/87 (19.5%) of probands with MRKH and included seven deletions, three duplications, one new translocation in 5/50 cells-t(7;14)(q32;q32), confirmation of a previously identified translocation-t(3;16)(p22.3;p13.3), and two aneuploidies. Of interest, three cases of mosaicism (3.4% of probands) were identified-25% mosaicism for trisomy 12, 45,X(75%)/46,XX (25%), and 10% mosaicism for a 7;14 translocation. Our study constitutes the first systematic investigation of SVs by OGM in individuals with MRKH. We propose that OGM is a promising method that enables a comprehensive investigation of a variety of SVs in a single assay including cryptic translocations and mosaic aneuploidies. These observations suggest that mosaicism could play a role in the genesis of MRKH.


Asunto(s)
Anomalías Congénitas , Mosaicismo , Humanos , Hibridación Fluorescente in Situ , Aneuploidia , Mapeo Cromosómico , Anomalías Congénitas/genética
6.
J Med Virol ; 95(9): e29067, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37675796

RESUMEN

The COVID-19 pandemic had a profound impact on global health, but rapid vaccine administration resulted in a significant decline in morbidity and mortality rates worldwide. In this study, we sought to explore the temporal changes in the humoral immune response against SARS-CoV-2 healthcare workers (HCWs) in Augusta, GA, USA, and investigate any potential associations with ethno-demographic features. Specifically, we aimed to compare the naturally infected individuals with naïve individuals to understand the immune response dynamics after SARS-CoV-2 vaccination. A total of 290 HCWs were included and assessed prospectively in this study. COVID status was determined using a saliva-based COVID assay. Neutralizing antibody (NAb) levels were quantified using a chemiluminescent immunoassay system, and IgG levels were measured using an enzyme-linked immunosorbent assay method. We examined the changes in antibody levels among participants using different statistical tests including logistic regression and multiple correspondence analysis. Our findings revealed a significant decline in NAb and IgG levels at 8-12 months postvaccination. Furthermore, a multivariable analysis indicated that this decline was more pronounced in White HCWs (odds ratio [OR] = 2.1, 95% confidence interval [CI] = 1.07-4.08, p = 0.02) and IgG (OR = 2.07, 95% CI = 1.04-4.11, p = 0.03) among the whole cohort. Booster doses significantly increased IgG and NAb levels, while a decline in antibody levels was observed in participants without booster doses at 12 months postvaccination. Our results highlight the importance of understanding the dynamics of immune response and the potential influence of demographic factors on waning immunity to SARS-CoV-2. In addition, our findings emphasize the value of booster doses to ensure durable immunity.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , Pandemias , SARS-CoV-2 , Anticuerpos Neutralizantes , Personal de Salud , Inmunoglobulina G
7.
Curr Issues Mol Biol ; 43(2): 845-867, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34449545

RESUMEN

This review discusses the current testing methodologies for COVID-19 diagnosis and explores next-generation sequencing (NGS) technology for the detection of SARS-CoV-2 and monitoring phylogenetic evolution in the current COVID-19 pandemic. The review addresses the development, fundamentals, assay quality control and bioinformatics processing of the NGS data. This article provides a comprehensive review of the obstacles and opportunities facing the application of NGS technologies for the diagnosis, surveillance, and study of SARS-CoV-2 and other infectious diseases. Further, we have contemplated the opportunities and challenges inherent in the adoption of NGS technology as a diagnostic test with real-world examples of its utility in the fight against COVID-19.


Asunto(s)
COVID-19/virología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/genética , Biología Computacional/métodos , Humanos , Epidemiología Molecular/métodos , Pandemias , Filogenia , SARS-CoV-2/aislamiento & purificación
8.
Hepatology ; 71(2): 549-568, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31215069

RESUMEN

Cancer cells undergo metabolic adaptation to sustain uncontrolled proliferation. Aerobic glycolysis and glutaminolysis are two of the most essential characteristics of cancer metabolic reprogramming. Hyperactivated phosphoinositide 3-kinase (PI3K)/Akt serine/threonine kinase (Akt) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathways play central roles in cancer cell metabolic adaptation given that their downstream effectors, such as Akt and c-Myc, control most of the glycolytic and glutaminolysis genes. Here, we report that the cytosolic flavoprotein, NAD(P)H quinone dehydrogenase 1 (Nqo1), is strongly overexpressed in mouse and human hepatocellular carcinoma (HCC). Knockdown of Nqo1 enhanced activity of the serine/threonine phosphatase, protein phosphatase 2A, which operates at the intersection of the PI3K/Akt and MAPK/ERK pathways and dephosphorylates and inactivates pyruvate dehydrogenase kinase 1, Akt, Raf, mitogen-activated protein kinase kinase, and ERK1/2. Nqo1 ablation also induced the expression of phosphatase and tensin homolog, a dual protein/lipid phosphatase that blocks PI3K/Akt signaling, through the ERK/cAMP-responsive element-binding protein/c-Jun pathway. Together, Nqo1 ablation triggered simultaneous inhibition of the PI3K/Akt and MAPK/ERK pathways, suppressed the expression of glycolysis and glutaminolysis genes and blocked metabolic adaptation in liver cancer cells. Conversely, Nqo1 overexpression caused hyperactivation of the PI3K/Akt and MAPK/ERK pathways and promoted metabolic adaptation. Conclusion: In conclusion, Nqo1 functions as an upstream activator of both the PI3K/Akt and MAPK/ERK pathways in liver cancer cells, and Nqo1 ablation blocked metabolic adaptation and inhibited liver cancer cell proliferation and HCC growth in mice. Therefore, our results suggest that Nqo1 may function as a therapeutic target to inhibit liver cancer cell proliferation and inhibit HCC.


Asunto(s)
Carcinoma Hepatocelular/enzimología , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Neoplasias Hepáticas/enzimología , NAD(P)H Deshidrogenasa (Quinona)/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Animales , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Transducción de Señal
9.
Mediators Inflamm ; 2021: 2911578, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621138

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), affecting multiple organ systems, including the respiratory tract and lungs. Several studies have reported that the tryptophan-kynurenine pathway is altered in COVID-19 patients. The tryptophan-kynurenine pathway plays a vital role in regulating inflammation, metabolism, immune responses, and musculoskeletal system biology. In this minireview, we surmise the effects of the kynurenine pathway in COVID-19 patients and how this pathway might impact muscle and bone biology.


Asunto(s)
Enfermedades Óseas/etiología , COVID-19/complicaciones , Quinurenina/metabolismo , Enfermedades Musculares/etiología , SARS-CoV-2 , Triptófano/metabolismo , Animales , Humanos , Receptores de Hidrocarburo de Aril/fisiología , Transducción de Señal/fisiología
10.
J Neuroinflammation ; 17(1): 286, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32998763

RESUMEN

The coronavirus disease-19 (COVID-19) pandemic is an unprecedented worldwide health crisis. COVID-19 is caused by SARS-CoV-2, a highly infectious pathogen that is genetically similar to SARS-CoV. Similar to other recent coronavirus outbreaks, including SARS and MERS, SARS-CoV-2 infected patients typically present with fever, dry cough, fatigue, and lower respiratory system dysfunction, including high rates of pneumonia and acute respiratory distress syndrome (ARDS); however, a rapidly accumulating set of clinical studies revealed atypical symptoms of COVID-19 that involve neurological signs, including headaches, anosmia, nausea, dysgeusia, damage to respiratory centers, and cerebral infarction. These unexpected findings may provide important clues regarding the pathological sequela of SARS-CoV-2 infection. Moreover, no efficacious therapies or vaccines are currently available, complicating the clinical management of COVID-19 patients and emphasizing the public health need for controlled, hypothesis-driven experimental studies to provide a framework for therapeutic development. In this mini-review, we summarize the current body of literature regarding the central nervous system (CNS) effects of SARS-CoV-2 and discuss several potential targets for therapeutic development to reduce neurological consequences in COVID-19 patients.


Asunto(s)
Infecciones por Coronavirus/complicaciones , Enfermedades del Sistema Nervioso/virología , Neumonía Viral/complicaciones , Betacoronavirus , COVID-19 , Humanos , Pandemias , SARS-CoV-2
11.
J Immunol ; 200(8): 2905-2914, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29514953

RESUMEN

A set of coordinated interactions between gut microbiota and the immune cells surveilling the intestine play a key role in shaping local immune responses and intestinal health. Gpr109a is a G protein-coupled receptor expressed at a very high level on innate immune cells and previously shown to play a key role in the induction of colonic regulatory T cells. In this study, we show that Gpr109a-/-Rag1-/- mice exhibit spontaneous rectal prolapse and colonic inflammation, characterized by the presence of an elevated number of IL-17-producing Rorγt+ innate lymphoid cells (ILCs; ILC3). Genetic deletion of Rorγt alleviated the spontaneous colonic inflammation in Gpr109a-/-Rag1-/- mice. Gpr109a-deficient colonic dendritic cells produce higher amounts of IL-23 and thereby promote ILC3. Moreover, the depletion of gut microbiota by antibiotics treatment decreased IL-23 production, ILC3, and colonic inflammation in Gpr109a-/-Rag1-/- mice. The ceca of Gpr109a-/-Rag1-/- mice showed significantly increased colonization by members of Bacteroidaceae, Porphyromonadaceae, Prevotellaceae, Streptococcaceae, Christensenellaceae, and Mogibacteriaceae, as well as IBD-associated microbiota such as Enterobacteriaceae and Mycoplasmataceae, compared with Rag1-/- mice, housed in a facility positive for Helicobacter and murine norovirus. Niacin, a Gpr109a agonist, suppressed both IL-23 production by colonic DCs and ILC3 number in a Gpr109a-dependent manner. Collectively, our data present a model suggesting that targeting Gpr109a will be potentially beneficial in the suppression of IL-23-mediated immunopathologies.


Asunto(s)
Colitis/inmunología , Colitis/microbiología , Microbioma Gastrointestinal/inmunología , Interleucina-23/biosíntesis , Linfocitos/inmunología , Receptores Acoplados a Proteínas G/inmunología , Animales , Colon/citología , Colon/inmunología , Inmunidad Mucosa/inmunología , Mediadores de Inflamación , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
12.
Future Oncol ; 16(36): 3085-3094, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32976029

RESUMEN

Indoleamine 2,3 dioxygenase (IDO), first discovered in the 1960s, is an enzyme that has become a highly investigated metabolic target in cancer research. IDO is the rate-limiting step in tryptophan metabolism catabolism into its byproducts - kynurenines. Both IDO and kynurenines have been implicated in altering the tumor microenvironment, allowing for a tolerogenesis by affecting T-cell maturation and proliferation, and more specifically by inducing differentiation into T regulatory cells. Two mechanisms have been suspected in creating this environment: tryptophan starvation and metabolite toxicity. IDO has been shown to be expressed not only in cancer cells but also in antigen-presenting cells. The exact mechanisms underlying the two different sites of expression have not been fully elucidated. To date, most literature has focused on the role of IDO in solid tumors; we provide a review of IDO and its impact on hematological malignancies - more specifically, acute myeloid leukemia. The pathophysiology of IDO will be discussed, including a summarization of the literature to date on how IDO expression effects prognosis and disease progression in acute myeloid leukemia, along with current IDO-specific therapeutics with future considerations.


Asunto(s)
Antineoplásicos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Leucemia Mieloide Aguda/inmunología , Microambiente Tumoral/inmunología , Antineoplásicos/uso terapéutico , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Células Dendríticas/enzimología , Células Dendríticas/inmunología , Progresión de la Enfermedad , Regulación Leucémica de la Expresión Génica/inmunología , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Quinurenina/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Pronóstico , Supervivencia sin Progresión , Procesamiento Proteico-Postraduccional/inmunología , Tasa de Supervivencia , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Triptófano/metabolismo , Escape del Tumor/efectos de los fármacos , Escape del Tumor/inmunología , Microambiente Tumoral/efectos de los fármacos , Regulación hacia Arriba/inmunología
13.
Int J Mol Sci ; 20(15)2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31387239

RESUMEN

Colorectal cancer (CRC) is a high burden disease with several genes involved in tumor progression. The aim of the present study was to identify, generate and clinically validate a novel gene signature to improve prediction of overall survival (OS) to effectively manage colorectal cancer. We explored The Cancer Genome Atlas (TCGA), COAD and READ datasets (597 samples) from The Protein Atlas (TPA) database to extract a total of 595 candidate genes. In parallel, we identified 29 genes with perturbations in > 6 cancers which are also affected in CRC. These genes were entered in cBioportal to generate a 17 gene panel with highest perturbations. For clinical validation, this gene panel was tested on the FFPE tissues of colorectal cancer patients (88 patients) using Nanostring analysis. Using multivariate analysis, a high prognostic score (composite 4 gene signature-DPP7/2, YWHAB, MCM4 and FBXO46) was found to be a significant predictor of poor prognosis in CRC patients (HR: 3.42, 95% CI: 1.71-7.94, p < 0.001 *) along with stage (HR: 4.56, 95% CI: 1.35-19.15, p = 0.01 *). The Kaplan-Meier analysis also segregated patients on the basis of prognostic score (log-rank test, p = 0.001 *). The external validation using GEO dataset (GSE38832, 122 patients) corroborated the prognostic score (HR: 2.7, 95% CI: 1.99-3.73, p < 0.001 *). Additionally, higher score was able to differentiate stage II and III patients (130 patients) on the basis of OS (HR: 2.5, 95% CI: 1.78-3.63, p < 0.001 *). Overall, our results identify a novel 4 gene prognostic signature that has clinical utility in colorectal cancer.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Transcriptoma , Anciano , Anciano de 80 o más Años , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/terapia , Terapia Combinada , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Modelos de Riesgos Proporcionales , Curva ROC
14.
Int J Mol Sci ; 19(9)2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158456

RESUMEN

Recent evidence suggests that myeloid cells are critical in cancer development and therapy resistance processes. Pharmacological targeting of tumor-associated myeloid cells is an emerging approach among upcoming immune therapies. Surprisingly, myeloid cells are heterogeneous, including a subset of the myeloid cell displaying angiogenic properties in solid tumors. There is an urgent need to delineate angiogenic myeloid cell populations in order to facilitate specific targeting of protumor myeloid cells among heterogeneous pool. This review article is intended to compile all the relevant information in the literature for improved understanding of angiogenic myeloid cells and their role in tumor refractoriness to cancer therapy.


Asunto(s)
Células Mieloides/citología , Células Mieloides/fisiología , Neoplasias/radioterapia , Neoplasias/terapia , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Humanos , Inmunoterapia , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Receptor TIE-2/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
15.
FASEB J ; 30(1): 262-75, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26330493

RESUMEN

Reprograming of metabolism is one of the central hallmarks of cancer. The majority of cancer cells depend on high rates of glycolysis and glutaminolysis for their growth and survival. A number of oncogenes and tumor suppressors have been connected to the regulation of altered glucose and glutamine metabolism in cancer cells. For example, the oncogene c-Myc plays vital roles in cancer cell metabolic adaptation by directly regulating various genes that participate in aerobic glycolysis and glutaminolysis. Inhibitor of differentiation 1 (Id1) is a helix-loop-helix transcription factor that plays important roles in cell proliferation, differentiation, and cell fate determination. Overexpression of Id1 causes intestinal adenomas and thymic lymphomas in mice, suggesting that Id1 could function as an oncogene. Despite it being an oncogene, whether Id1 plays any prominent role in cancer cell metabolic reprograming is unknown. Here, we demonstrate that Id1 is strongly expressed in human and mouse liver tumors and in hepatocellular carcinoma (HCC) cell lines, whereas its expression is very low or undetectable in normal liver tissues. In HCC cells, Id1 expression is regulated by the MAPK/ERK pathway at the transcriptional level. Knockdown of Id1 suppressed aerobic glycolysis and glutaminolysis, suggesting that Id1 promotes a metabolic shift toward aerobic glycolysis. At the molecular level, Id1 mediates its metabolic effects by regulating the expression levels of c-Myc. Knockdown of Id1 resulted in down-regulation (∼75%) of c-Myc, whereas overexpression of Id1 strongly induced (3-fold) c-Myc levels. Interestingly, knockdown of c-Myc resulted in down-regulation (∼60%) of Id1, suggesting a positive feedback-loop regulatory mechanism between Id1 and c-Myc. Under anaerobic conditions, both Id1 and c-Myc are down-regulated (50-70%), and overexpression of oxygen-insensitive hypoxia-inducible factor 1α (Hif1α) or its downstream target Mxi1 resulted in a significant reduction of c-Myc and Id1 (∼70%), suggesting that Hif1α suppresses Id1 and c-Myc under anaerobic conditions via Mxi1. Together, our findings indicate a prominent novel role for Id1 in liver cancer cell metabolic adaptation.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Neoplasias Hepáticas/metabolismo , Oxígeno/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hipoxia de la Célula , Retroalimentación Fisiológica , Glucólisis , Células Hep G2 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteína 1 Inhibidora de la Diferenciación/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Supresoras de Tumor/metabolismo
16.
Genes (Basel) ; 15(4)2024 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-38674331

RESUMEN

Copy number alterations (CNAs) are significant in tumor initiation and progression. Identifying these aberrations is crucial for targeted therapies and personalized cancer diagnostics. Next-generation sequencing (NGS) methods present advantages in scalability and cost-effectiveness, surpassing limitations associated with reference assemblies and probe capacities in traditional laboratory approaches. This retrospective study evaluated CNAs in 50 FFPE tumor samples (breast cancer, ovarian carcinoma, pancreatic cancer, melanoma, and prostate carcinoma) using Illumina's TruSight Oncology 500 (TSO500) and the Affymetrix Oncoscan Molecular Inversion Probe (OS-MIP) (ThermoFisher Scientific, Waltham, MA, USA). NGS analysis with the NxClinical 6.2 software demonstrated a high sensitivity and specificity (100%) for CNA detection, with a complete concordance rate as compared to the OS-MIP. All 54 known CNAs were identified by NGS, with gains being the most prevalent (63%). Notable CNAs were observed in MYC (18%), TP53 (12%), BRAF (8%), PIK3CA, EGFR, and FGFR1 (6%) genes. The diagnostic parameters exhibited high accuracy, including a positive predictive value, negative predictive value, and overall diagnostic accuracy. This study underscores NxClinical as a reliable software for identifying clinically relevant gene alterations using NGS TSO500, offering valuable insights for personalized cancer treatment strategies based on CNA analysis.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias , Programas Informáticos , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Femenino , Masculino , Neoplasias/genética , Estudios Retrospectivos
17.
Int J Tryptophan Res ; 17: 11786469241246674, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38757095

RESUMEN

Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is crucial in maintaining the skeletal system. Our study focuses on encapsulating the role of AhR in bone biology and identifying novel signaling pathways in musculoskeletal pathologies using the GEO dataset. The GEO2R analysis identified 8 genes (CYP1C1, SULT6B1, CYB5A, EDN1, CXCR4B, CTGFA, TIPARP, and CXXC5A) involved in the AhR pathway, which play a pivotal role in bone remodeling. The AhR knockout in hematopoietic stem cells showed alteration in several novel bone-related transcriptomes (eg, Defb14, ZNF 51, and Chrm5). Gene Ontology Enrichment Analysis demonstrated 54 different biological processes associated with bone homeostasis. Mainly, these processes include bone morphogenesis, bone development, bone trabeculae formation, bone resorption, bone maturation, bone mineralization, and bone marrow development. Employing Functional Annotation and Clustering through DAVID, we further uncovered the involvement of the xenobiotic metabolic process, p450 pathway, oxidation-reduction, and nitric oxide biosynthesis process in the AhR signaling pathway. The conflicting evidence of current research of AhR signaling on bone (positive and negative effects) homeostasis may be due to variations in ligand binding affinity, binding sites, half-life, chemical structure, and other unknown factors. In summary, our study provides a comprehensive understanding of the underlying mechanisms of the AhR pathway in bone biology.

18.
Viruses ; 16(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38932146

RESUMEN

The novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as one of the most significant global health crises in recent history. The clinical characteristics of COVID-19 patients have revealed the possibility of immune activity changes contributing to disease severity. Nevertheless, limited information is available regarding the immune response in human lung tissue, which is the primary site of infection. In this study, we conducted an extensive analysis of lung tissue to screen for differentially expressed miRNAs and mRNAs in five individuals who died due to COVID-19 and underwent a rapid autopsy, as well as seven control individuals who died of other causes unrelated to COVID-19. To analyze the host response gene expression, miRNA microarray and Nanostring's nCounter XT gene expression assay were performed. Our study identified 37 downregulated and 77 upregulated miRNAs in COVID-19 lung biopsy samples compared to the controls. A total of 653 mRNA transcripts were differentially expressed between the two sample types, with most transcripts (472) being downregulated in COVID-19-positive specimens. Hierarchical and PCA K-means clustering analysis showed distinct clustering between COVID-19 and control samples. Enrichment and network analyses revealed differentially expressed genes important for innate immunity and inflammatory response in COVID-19 lung biopsies. The interferon-signaling pathway was highly upregulated in COVID-19 specimens while genes involved in interleukin-17 signaling were downregulated. These findings shed light on the mechanisms of host cellular responses to COVID-19 infection in lung tissues and could help identify new targets for the prevention and treatment of COVID-19 infection.


Asunto(s)
Autopsia , COVID-19 , Redes Reguladoras de Genes , Pulmón , MicroARNs , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/virología , COVID-19/inmunología , Pulmón/virología , Pulmón/patología , MicroARNs/genética , MicroARNs/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Perfilación de la Expresión Génica , ARN Mensajero/genética , Adulto
19.
Cancers (Basel) ; 16(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38339232

RESUMEN

Colorectal cancer (CRC) is one of the most heterogeneous and deadly diseases, with a global incidence of 1.5 million cases per year. Genomics has revolutionized the clinical management of CRC by enabling comprehensive molecular profiling of cancer. However, a deeper understanding of the molecular factors is needed to identify new prognostic and predictive markers that can assist in designing more effective therapeutic regimens for the improved management of CRC. Recent breakthroughs in single-cell analysis have identified new cell subtypes that play a critical role in tumor progression and could serve as potential therapeutic targets. Spatial analysis of the transcriptome and proteome holds the key to unlocking pathogenic cellular interactions, while liquid biopsy profiling of molecular variables from serum holds great potential for monitoring therapy resistance. Furthermore, gene expression signatures from various pathways have emerged as promising prognostic indicators in colorectal cancer and have the potential to enhance the development of equitable medicine. The advancement of these technologies for identifying new markers, particularly in the domain of predictive and personalized medicine, has the potential to improve the management of patients with CRC. Further investigations utilizing similar methods could uncover molecular subtypes specific to emerging therapies, potentially strengthening the development of personalized medicine for CRC patients.

20.
J Mol Diagn ; 26(3): 213-226, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38211722

RESUMEN

Optical genome mapping is a high-resolution technology that can detect all types of structural variations in the genome. This second phase of a multisite study compares the performance of optical genome mapping and current standard-of-care methods for diagnostic testing of individuals with constitutional disorders, including neurodevelopmental impairments and congenital anomalies. Among the 627 analyses in phase 2, 405 were of retrospective samples supplied by five diagnostic centers in the United States and 94 were prospective samples collected over 18 months by two diagnostic centers (June 2021 to October 2022). Additional samples represented a family cohort to determine inheritance (n = 119) and controls (n = 9). Full concordance of results between optical genome mapping and one or more standard-of-care diagnostic tests was 98.6% (618/627), with partial concordance in an additional 1.1% (7/627).


Asunto(s)
Estudios Prospectivos , Humanos , Mapeo Cromosómico , Estudios Retrospectivos , Recién Nacido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA