Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nature ; 611(7936): 519-531, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36261518

RESUMEN

The current human reference genome, GRCh38, represents over 20 years of effort to generate a high-quality assembly, which has benefitted society1,2. However, it still has many gaps and errors, and does not represent a biological genome as it is a blend of multiple individuals3,4. Recently, a high-quality telomere-to-telomere reference, CHM13, was generated with the latest long-read technologies, but it was derived from a hydatidiform mole cell line with a nearly homozygous genome5. To address these limitations, the Human Pangenome Reference Consortium formed with the goal of creating high-quality, cost-effective, diploid genome assemblies for a pangenome reference that represents human genetic diversity6. Here, in our first scientific report, we determined which combination of current genome sequencing and assembly approaches yield the most complete and accurate diploid genome assembly with minimal manual curation. Approaches that used highly accurate long reads and parent-child data with graph-based haplotype phasing during assembly outperformed those that did not. Developing a combination of the top-performing methods, we generated our first high-quality diploid reference assembly, containing only approximately four gaps per chromosome on average, with most chromosomes within ±1% of the length of CHM13. Nearly 48% of protein-coding genes have non-synonymous amino acid changes between haplotypes, and centromeric regions showed the highest diversity. Our findings serve as a foundation for assembling near-complete diploid human genomes at scale for a pangenome reference to capture global genetic variation from single nucleotides to structural rearrangements.


Asunto(s)
Mapeo Cromosómico , Diploidia , Genoma Humano , Genómica , Humanos , Mapeo Cromosómico/normas , Genoma Humano/genética , Haplotipos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/normas , Estándares de Referencia , Genómica/métodos , Genómica/normas , Cromosomas Humanos/genética , Variación Genética/genética
2.
Am J Hum Genet ; 111(3): 544-561, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38307027

RESUMEN

Cervical cancer is caused by human papillomavirus (HPV) infection, has few approved targeted therapeutics, and is the most common cause of cancer death in low-resource countries. We characterized 19 cervical and four head and neck cancer cell lines using long-read DNA and RNA sequencing and identified the HPV types, HPV integration sites, chromosomal alterations, and cancer driver mutations. Structural variation analysis revealed telomeric deletions associated with DNA inversions resulting from breakage-fusion-bridge (BFB) cycles. BFB is a common mechanism of chromosomal alterations in cancer, and our study applies long-read sequencing to this important chromosomal rearrangement type. Analysis of the inversion sites revealed staggered ends consistent with exonuclease digestion of the DNA after breakage. Some BFB events are complex, involving inter- or intra-chromosomal insertions or rearrangements. None of the BFB breakpoints had telomere sequences added to resolve the dicentric chromosomes, and only one BFB breakpoint showed chromothripsis. Five cell lines have a chromosomal region 11q BFB event, with YAP1-BIRC3-BIRC2 amplification. Indeed, YAP1 amplification is associated with a 10-year-earlier age of diagnosis of cervical cancer and is three times more common in African American women. This suggests that individuals with cervical cancer and YAP1-BIRC3-BIRC2 amplification, especially those of African ancestry, might benefit from targeted therapy. In summary, we uncovered valuable insights into the mechanisms and consequences of BFB cycles in cervical cancer using long-read sequencing.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/genética , Aberraciones Cromosómicas , Telómero/genética , ADN
3.
Nat Methods ; 20(10): 1483-1492, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37710018

RESUMEN

Long-read sequencing technologies substantially overcome the limitations of short-reads but have not been considered as a feasible replacement for population-scale projects, being a combination of too expensive, not scalable enough or too error-prone. Here we develop an efficient and scalable wet lab and computational protocol, Napu, for Oxford Nanopore Technologies long-read sequencing that seeks to address those limitations. We applied our protocol to cell lines and brain tissue samples as part of a pilot project for the National Institutes of Health Center for Alzheimer's and Related Dementias. Using a single PromethION flow cell, we can detect single nucleotide polymorphisms with F1-score comparable to Illumina short-read sequencing. Small indel calling remains difficult within homopolymers and tandem repeats, but achieves good concordance to Illumina indel calls elsewhere. Further, we can discover structural variants with F1-score on par with state-of-the-art de novo assembly methods. Our protocol phases small and structural variants at megabase scales and produces highly accurate, haplotype-specific methylation calls.


Asunto(s)
Genoma Humano , Secuenciación de Nanoporos , Humanos , Análisis de Secuencia de ADN/métodos , Haplotipos , Metilación , Proyectos Piloto , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
4.
Genome Res ; 32(11-12): 2119-2133, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36418060

RESUMEN

The advent of long and accurate "HiFi" reads has greatly improved our ability to generate complete metagenome-assembled genomes (MAGs), enabling "complete metagenomics" studies that were nearly impossible to conduct with short reads. In particular, HiFi reads simplify the identification and phasing of mutations in MAGs: It is increasingly feasible to distinguish between positions that are prone to mutations and positions that rarely ever mutate, and to identify co-occurring groups of mutations. However, the problems of identifying rare mutations in MAGs, estimating the false-discovery rate (FDR) of these identifications, and phasing identified mutations remain open in the context of HiFi data. We present strainFlye, a pipeline for the FDR-controlled identification and analysis of rare mutations in MAGs assembled using HiFi reads. We show that deep HiFi sequencing has the potential to reveal and phase tens of thousands of rare mutations in a single MAG, identify hotspots and coldspots of these mutations, and detail MAGs' growth dynamics.


Asunto(s)
Bacterias , Metagenoma , Bacterias/genética , Metagenómica , Mutación
5.
Nat Methods ; 19(4): 429-440, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35396482

RESUMEN

Evaluating metagenomic software is key for optimizing metagenome interpretation and focus of the Initiative for the Critical Assessment of Metagenome Interpretation (CAMI). The CAMI II challenge engaged the community to assess methods on realistic and complex datasets with long- and short-read sequences, created computationally from around 1,700 new and known genomes, as well as 600 new plasmids and viruses. Here we analyze 5,002 results by 76 program versions. Substantial improvements were seen in assembly, some due to long-read data. Related strains still were challenging for assembly and genome recovery through binning, as was assembly quality for the latter. Profilers markedly matured, with taxon profilers and binners excelling at higher bacterial ranks, but underperforming for viruses and Archaea. Clinical pathogen detection results revealed a need to improve reproducibility. Runtime and memory usage analyses identified efficient programs, including top performers with other metrics. The results identify challenges and guide researchers in selecting methods for analyses.


Asunto(s)
Metagenoma , Metagenómica , Archaea/genética , Metagenómica/métodos , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Programas Informáticos
6.
Nat Methods ; 18(11): 1322-1332, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34725481

RESUMEN

Long-read sequencing has the potential to transform variant detection by reaching currently difficult-to-map regions and routinely linking together adjacent variations to enable read-based phasing. Third-generation nanopore sequence data have demonstrated a long read length, but current interpretation methods for their novel pore-based signal have unique error profiles, making accurate analysis challenging. Here, we introduce a haplotype-aware variant calling pipeline, PEPPER-Margin-DeepVariant, that produces state-of-the-art variant calling results with nanopore data. We show that our nanopore-based method outperforms the short-read-based single-nucleotide-variant identification method at the whole-genome scale and produces high-quality single-nucleotide variants in segmental duplications and low-mappability regions where short-read-based genotyping fails. We show that our pipeline can provide highly contiguous phase blocks across the genome with nanopore reads, contiguously spanning between 85% and 92% of annotated genes across six samples. We also extend PEPPER-Margin-DeepVariant to PacBio HiFi data, providing an efficient solution with superior performance over the current WhatsHap-DeepVariant standard. Finally, we demonstrate de novo assembly polishing methods that use nanopore and PacBio HiFi reads to produce diploid assemblies with high accuracy (Q35+ nanopore-polished and Q40+ PacBio HiFi-polished).


Asunto(s)
Genes , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nanoporos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Genoma Humano , Humanos , Anotación de Secuencia Molecular
7.
Nat Methods ; 17(11): 1103-1110, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33020656

RESUMEN

Long-read sequencing technologies have substantially improved the assemblies of many isolate bacterial genomes as compared to fragmented short-read assemblies. However, assembling complex metagenomic datasets remains difficult even for state-of-the-art long-read assemblers. Here we present metaFlye, which addresses important long-read metagenomic assembly challenges, such as uneven bacterial composition and intra-species heterogeneity. First, we benchmarked metaFlye using simulated and mock bacterial communities and show that it consistently produces assemblies with better completeness and contiguity than state-of-the-art long-read assemblers. Second, we performed long-read sequencing of the sheep microbiome and applied metaFlye to reconstruct 63 complete or nearly complete bacterial genomes within single contigs. Finally, we show that long-read assembly of human microbiomes enables the discovery of full-length biosynthetic gene clusters that encode biomedically important natural products.


Asunto(s)
Genoma Bacteriano/genética , Genoma Humano/genética , Metagenoma/genética , Metagenómica/métodos , Microbiota/genética , Algoritmos , Animales , Benchmarking , Microbioma Gastrointestinal/genética , Humanos , Análisis de Secuencia de ADN/métodos , Ovinos , Programas Informáticos , Especificidad de la Especie
8.
Genome Res ; 28(11): 1720-1732, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30341161

RESUMEN

Despite the rapid development of sequencing technologies, the assembly of mammalian-scale genomes into complete chromosomes remains one of the most challenging problems in bioinformatics. To help address this difficulty, we developed Ragout 2, a reference-assisted assembly tool that works for large and complex genomes. By taking one or more target assemblies (generated from an NGS assembler) and one or multiple related reference genomes, Ragout 2 infers the evolutionary relationships between the genomes and builds the final assemblies using a genome rearrangement approach. By using Ragout 2, we transformed NGS assemblies of 16 laboratory mouse strains into sets of complete chromosomes, leaving <5% of sequence unlocalized per set. Various benchmarks, including PCR testing and realigning of long Pacific Biosciences (PacBio) reads, suggest only a small number of structural errors in the final assemblies, comparable with direct assembly approaches. We applied Ragout 2 to the Mus caroli and Mus pahari genomes, which exhibit karyotype-scale variations compared with other genomes from the Muridae family. Chromosome painting maps confirmed most large-scale rearrangements that Ragout 2 detected. We applied Ragout 2 to improve draft sequences of three ape genomes that have recently been published. Ragout 2 transformed three sets of contigs (generated using PacBio reads only) into chromosome-scale assemblies with accuracy comparable to chromosome assemblies generated in the original study using BioNano maps, Hi-C, BAC clones, and FISH.


Asunto(s)
Mapeo Contig/métodos , Secuenciación Completa del Genoma/métodos , Animales , Mapeo Contig/normas , Ratones , Estándares de Referencia , Secuenciación Completa del Genoma/normas
9.
Genome Res ; 28(4): 448-459, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29563166

RESUMEN

Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology.


Asunto(s)
Evolución Molecular , Genoma/genética , Muridae/genética , Filogenia , Animales , Sitios de Unión , Factor de Unión a CCCTC/genética , Cromosomas/genética , Cariotipificación/métodos , Elementos de Nucleótido Esparcido Largo/genética , Ratones , Retroelementos/genética , Especificidad de la Especie
10.
Bioinformatics ; 35(18): 3476-3478, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30715194

RESUMEN

SUMMARY: Currently, most genome assembly projects focus on contigs and scaffolds rather than assembly graphs that provide a more comprehensive representation of an assembly. Since interactive visualization of large assembly graphs remains an open problem, we developed an Assembly Graph Browser (AGB) tool that visualizes large assembly graphs, extending the functionality of previously developed visualization approaches. Assembly Graph Browser includes a number of novel functions including repeat analysis, construction of the contracted assembly graphs (i.e. the graphs obtained by collapsing a selected set of edges) and a new approach to visualizing large assembly graphs. AVAILABILITY AND IMPLEMENTATION: http://www.github.com/almiheenko/AGB. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos
11.
Proc Natl Acad Sci U S A ; 113(52): E8396-E8405, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-27956617

RESUMEN

The recent breakthroughs in assembling long error-prone reads were based on the overlap-layout-consensus (OLC) approach and did not utilize the strengths of the alternative de Bruijn graph approach to genome assembly. Moreover, these studies often assume that applications of the de Bruijn graph approach are limited to short and accurate reads and that the OLC approach is the only practical paradigm for assembling long error-prone reads. We show how to generalize de Bruijn graphs for assembling long error-prone reads and describe the ABruijn assembler, which combines the de Bruijn graph and the OLC approaches and results in accurate genome reconstructions.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Algoritmos , Benchmarking , Escherichia coli/genética , Genómica , Reproducibilidad de los Resultados , Programas Informáticos , Xanthomonas/genética
12.
PLoS Comput Biol ; 13(5): e1005356, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28486472

RESUMEN

Recent advances in top-down mass spectrometry enabled identification of intact proteins, but this technology still faces challenges. For example, top-down mass spectrometry suffers from a lack of sensitivity since the ion counts for a single fragmentation event are often low. In contrast, nanopore technology is exquisitely sensitive to single intact molecules, but it has only been successfully applied to DNA sequencing, so far. Here, we explore the potential of sub-nanopores for single-molecule protein identification (SMPI) and describe an algorithm for identification of the electrical current blockade signal (nanospectrum) resulting from the translocation of a denaturated, linearly charged protein through a sub-nanopore. The analysis of identification p-values suggests that the current technology is already sufficient for matching nanospectra against small protein databases, e.g., protein identification in bacterial proteomes.


Asunto(s)
Nanoporos , Nanotecnología/métodos , Proteínas/química , Proteínas/clasificación , Algoritmos , Bases de Datos de Proteínas
13.
J Proteome Res ; 15(1): 144-51, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26629978

RESUMEN

In the past decade, proteogenomics has emerged as a valuable technique that contributes to the state-of-the-art in genome annotation; however, previous proteogenomic studies were limited to bottom-up mass spectrometry and did not take advantage of top-down approaches. We show that top-down proteogenomics allows one to address the problems that remained beyond the reach of traditional bottom-up proteogenomics. In particular, we show that top-down proteogenomics leads to the discovery of previously unannotated genes even in extensively studied bacterial genomes and present SpectroGene, a software tool for genome annotation using top-down tandem mass spectra. We further show that top-down proteogenomics searches (against the six-frame translation of a genome) identify nearly all proteoforms found in traditional top-down proteomics searches (against the annotated proteome). SpectroGene is freely available at http://github.com/fenderglass/SpectroGene .


Asunto(s)
Proteínas Arqueales/genética , Proteínas Bacterianas/genética , Proteoma/genética , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Bacterianas/química , Genes Arqueales , Genes Bacterianos , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Proteoma/química , Proteómica/métodos , Proteómica/normas , Pyrococcus furiosus/genética , Estándares de Referencia , Salmonella typhimurium/genética
14.
Bioinformatics ; 30(12): i302-9, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24931998

RESUMEN

SUMMARY: Bacterial genomes are simpler than mammalian ones, and yet assembling the former from the data currently generated by high-throughput short-read sequencing machines still results in hundreds of contigs. To improve assembly quality, recent studies have utilized longer Pacific Biosciences (PacBio) reads or jumping libraries to connect contigs into larger scaffolds or help assemblers resolve ambiguities in repetitive regions of the genome. However, their popularity in contemporary genomic research is still limited by high cost and error rates. In this work, we explore the possibility of improving assemblies by using complete genomes from closely related species/strains. We present Ragout, a genome rearrangement approach, to address this problem. In contrast with most reference-guided algorithms, where only one reference genome is used, Ragout uses multiple references along with the evolutionary relationship among these references in order to determine the correct order of the contigs. Additionally, Ragout uses the assembly graph and multi-scale synteny blocks to reduce assembly gaps caused by small contigs from the input assembly. In simulations as well as real datasets, we believe that for common bacterial species, where many complete genome sequences from related strains have been available, the current high-throughput short-read sequencing paradigm is sufficient to obtain a single high-quality scaffold for each chromosome. AVAILABILITY: The Ragout software is freely available at: https://github.com/fenderglass/Ragout.


Asunto(s)
Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Algoritmos , Cromosomas Bacterianos , Genómica/métodos , Genómica/normas , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Filogenia , Estándares de Referencia , Análisis de Secuencia de ADN/normas , Staphylococcus aureus/genética , Sintenía
15.
medRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38585974

RESUMEN

Most current studies rely on short-read sequencing to detect somatic structural variation (SV) in cancer genomes. Long-read sequencing offers the advantage of better mappability and long-range phasing, which results in substantial improvements in germline SV detection. However, current long-read SV detection methods do not generalize well to the analysis of somatic SVs in tumor genomes with complex rearrangements, heterogeneity, and aneuploidy. Here, we present Severus: a method for the accurate detection of different types of somatic SVs using a phased breakpoint graph approach. To benchmark various short- and long-read SV detection methods, we sequenced five tumor/normal cell line pairs with Illumina, Nanopore, and PacBio sequencing platforms; on this benchmark Severus showed the highest F1 scores (harmonic mean of the precision and recall) as compared to long-read and short-read methods. We then applied Severus to three clinical cases of pediatric cancer, demonstrating concordance with known genetic findings as well as revealing clinically relevant cryptic rearrangements missed by standard genomic panels.

16.
medRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496498

RESUMEN

Less than half of individuals with a suspected Mendelian condition receive a precise molecular diagnosis after comprehensive clinical genetic testing. Improvements in data quality and costs have heightened interest in using long-read sequencing (LRS) to streamline clinical genomic testing, but the absence of control datasets for variant filtering and prioritization has made tertiary analysis of LRS data challenging. To address this, the 1000 Genomes Project ONT Sequencing Consortium aims to generate LRS data from at least 800 of the 1000 Genomes Project samples. Our goal is to use LRS to identify a broader spectrum of variation so we may improve our understanding of normal patterns of human variation. Here, we present data from analysis of the first 100 samples, representing all 5 superpopulations and 19 subpopulations. These samples, sequenced to an average depth of coverage of 37x and sequence read N50 of 54 kbp, have high concordance with previous studies for identifying single nucleotide and indel variants outside of homopolymer regions. Using multiple structural variant (SV) callers, we identify an average of 24,543 high-confidence SVs per genome, including shared and private SVs likely to disrupt gene function as well as pathogenic expansions within disease-associated repeats that were not detected using short reads. Evaluation of methylation signatures revealed expected patterns at known imprinted loci, samples with skewed X-inactivation patterns, and novel differentially methylated regions. All raw sequencing data, processed data, and summary statistics are publicly available, providing a valuable resource for the clinical genetics community to discover pathogenic SVs.

17.
bioRxiv ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38168361

RESUMEN

Pangenomes, by including genetic diversity, should reduce reference bias by better representing new samples compared to them. Yet when comparing a new sample to a pangenome, variants in the pangenome that are not part of the sample can be misleading, for example, causing false read mappings. These irrelevant variants are generally rarer in terms of allele frequency, and have previously been dealt with using allele frequency filters. However, this is a blunt heuristic that both fails to remove some irrelevant variants and removes many relevant variants. We propose a new approach, inspired by local ancestry inference methods, that imputes a personalized pangenome subgraph based on sampling local haplotypes according to k-mer counts in the reads. Our approach is tailored for the Giraffe short read aligner, as the indexes it needs for read mapping can be built quickly. We compare the accuracy of our approach to state-of-the-art methods using graphs from the Human Pangenome Reference Consortium. The resulting personalized pangenome pipelines provide faster pangenome read mapping than comparable pipelines that use a linear reference, reduce small variant genotyping errors by 4x relative to the Genome Analysis Toolkit (GATK) best-practice pipeline, and for the first time make short-read structural variant genotyping competitive with long-read discovery methods.

18.
medRxiv ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37662332

RESUMEN

Cervical cancer is caused by human papillomavirus (HPV) infection, has few approved targeted therapeutics, and is the most common cause of cancer death in low-resource countries. We characterized 19 cervical and four head and neck cell lines using long-read DNA and RNA sequencing and identified the HPV types, HPV integration sites, chromosomal alterations, and cancer driver mutations. Structural variation analysis revealed telomeric deletions associated with DNA inversions resulting from breakage-fusion-bridge (BFB) cycles. BFB is a common mechanism of chromosomal alterations in cancer, and this is one of the first analyses of these events using long-read sequencing. Analysis of the inversion sites revealed staggered ends consistent with exonuclease digestion of the DNA after breakage. Some BFB events are complex, involving inter- or intra-chromosomal insertions or rearrangements. None of the BFB breakpoints had telomere sequences added to resolve the dicentric chromosomes and only one BFB breakpoint showed chromothripsis. Five cell lines have a Chr11q BFB event, with YAP1/BIRC2/BIRC3 gene amplification. Indeed, YAP1 amplification is associated with a 10-year earlier age of diagnosis of cervical cancer and is three times more common in African American women. This suggests that cervical cancer patients with YAP1/BIRC2/BIRC3-amplification, especially those of African American ancestry, might benefit from targeted therapy. In summary, we uncovered new insights into the mechanisms and consequences of BFB cycles in cervical cancer using long-read sequencing.

19.
bioRxiv ; 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36711673

RESUMEN

Long-read sequencing technologies substantially overcome the limitations of short-reads but to date have not been considered as feasible replacement at scale due to a combination of being too expensive, not scalable enough, or too error-prone. Here, we develop an efficient and scalable wet lab and computational protocol for Oxford Nanopore Technologies (ONT) long-read sequencing that seeks to provide a genuine alternative to short-reads for large-scale genomics projects. We applied our protocol to cell lines and brain tissue samples as part of a pilot project for the NIH Center for Alzheimer's and Related Dementias (CARD). Using a single PromethION flow cell, we can detect SNPs with F1-score better than Illumina short-read sequencing. Small indel calling remains to be difficult inside homopolymers and tandem repeats, but is comparable to Illumina calls elsewhere. Further, we can discover structural variants with F1-score comparable to state-of the-art methods involving Pacific Biosciences HiFi sequencing and trio information (but at a lower cost and greater throughput). Using ONT based phasing, we can then combine and phase small and structural variants at megabase scales. Our protocol also produces highly accurate, haplotype-specific methylation calls. Overall, this makes large-scale long-read sequencing projects feasible; the protocol is currently being used to sequence thousands of brain-based genomes as a part of the NIH CARD initiative. We provide the protocol and software as open-source integrated pipelines for generating phased variant calls and assemblies.

20.
Genome Biol ; 23(1): 57, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35189932

RESUMEN

Although the use of long-read sequencing improves the contiguity of assembled viral genomes compared to short-read methods, assembling complex viral communities remains an open problem. We describe the viralFlye tool for identification and analysis of metagenome-assembled viruses in long-read assemblies. We show it significantly improves viral assemblies and demonstrate that long-reads result in a much larger array of predicted virus-host associations as compared to short-read assemblies. We demonstrate that the identification of novel CRISPR arrays in bacterial genomes from a newly assembled metagenomic sample provides information for predicting novel hosts for novel viruses.


Asunto(s)
Metagenómica , Virus , Genoma Bacteriano , Metagenoma , Metagenómica/métodos , Análisis de Secuencia de ADN/métodos , Virus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA