Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Molecules ; 28(10)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37241952

RESUMEN

Despite the progress of medicine, colorectal cancer has occupied one of the highest positions in the rankings of cancer morbidity and mortality for many years. Thus, alternative methods of its treatment are sought. One of the newer therapeutic strategies is immunotherapy based on NK cells (natural killers), which are the body's first line of defense against cancer. The aim of the study was to verify the possibility of using (1→3)-α-d-glucooligosaccharides (GOSs) obtained via acid hydrolysis of (1→3)-α-d-glucan from the fruiting body of Laetiporus sulphureus to improve the anticancer effect of NK-92 cells, with proven clinical utility, against selected human colon adenocarcinoma cell lines LS180 and HT-29. The study revealed that the investigated oligosaccharides significantly enhanced the ability of NK-92 cells to eliminate the examined colon cancer cells, mostly by an increase in their cytotoxic activity. The most significant effect was observed in LS180 and HT-29 cells exposed to a two-times higher quantity of NK cells activated by 500 µg/mL GOS, wherein NK-92 killing properties increased for 20.5% (p < 0.001) and 24.8% (p < 0.001), respectively. The beneficial impact of (1→3)-α-d-glucooligosaccharides on the anticancer properties of NK-92 suggests their use in colon cancer immunotherapy as adjuvants; however, the obtained data require further investigation and confirmation.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias del Colon , Humanos , Neoplasias del Colon/tratamiento farmacológico , Adenocarcinoma/tratamiento farmacológico , Células Asesinas Naturales , Células HT29 , Antineoplásicos/farmacología
2.
Molecules ; 28(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37630373

RESUMEN

Fungi are a unique natural resource rich in polysaccharides, proteins, and other components. Polysaccharides are considered one of the most important bioactive components in fungi. Increasing numbers of studies have confirmed that fungal polysaccharides have various biological activities. Given these facts, the main aim of this investigation was to carry out isolation, identification, and structural characterisation of a new polysaccharide (EPS) derived from laboratory-cultured vegetative mycelium of a new Spongipellis borealis strain isolated from the environment. The examination of monosaccharides in the EPS demonstrated that the isolated biopolymer was composed mainly of glucose, galactose, and mannose monomers. The analysis of the methylation of the studied polymer indicated that it contained mainly terminal, →3)-linked, →4)-linked, and →2,4)-linked hexoses. The effect of fungal polysaccharides on S. borealis proteolytic enzymes (pepsin, trypsin, and pycnoporopepsin) and laccase activity was determined for the first time. Incubation of the enzyme preparation and EPS showed an influence of EPS on the stability of these enzymes, compared to the control values (without EPS).


Asunto(s)
Polisacáridos Fúngicos , Polyporales , Polisacáridos Fúngicos/farmacología , Madera , Biotecnología , Hongos , Péptido Hidrolasas
3.
Molecules ; 28(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38005303

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are common xenobiotics that are detrimental to the environment and human health. Bacterial endophytes, having the capacity to degrade PAHs, and plant growth promotion (PGP) may facilitate their biodegradation. In this study, phenanthrene (PHE) utilization of a newly isolated PGP endophytic strain of Pseudomonas chlororaphis 23aP and factors affecting the process were evaluated. The data obtained showed that strain 23aP utilized PHE in a wide range of concentrations (6-100 ppm). Ethyl-acetate-extractable metabolites obtained from the PHE-enriched cultures were analyzed by gas chromatography-mass spectrometry (GC-MS) and thin-layer chromatography (HPTLC). The analysis identified phthalic acid, 3-(1-naphthyl)allyl alcohol, 2-hydroxybenzalpyruvic acid, α-naphthol, and 2-phenylbenzaldehyde, and allowed us to propose that the PHE degradation pathway of strain 23aP is initiated at the 1,2-, 3,4-carbon positions, while the 9,10-C pathway starts with non-enzymatic oxidation and is continued by the downstream phthalic pathway. Moreover, the production of the biosurfactants, mono- (Rha-C8-C8, Rha-C10-C8:1, Rha-C12:2-C10, and Rha-C12:1-C12:1) and dirhamnolipids (Rha-Rha-C8-C10), was confirmed using direct injection-electrospray ionization-mass spectrometry (DI-ESI-MS) technique. Changes in the bacterial surface cell properties in the presence of PHE of increased hydrophobicity were assessed with the microbial adhesion to hydrocarbons (MATH) assay. Altogether, this suggests the strain 23aP might be used in bioaugmentation-a biological method supporting the removal of pollutants from contaminated environments.


Asunto(s)
Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Pseudomonas chlororaphis , Humanos , Pseudomonas chlororaphis/metabolismo , Fenantrenos/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Bacterias/metabolismo , Biodegradación Ambiental
4.
Molecules ; 27(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35268844

RESUMEN

Young green barley (YGB) water extract has revealed a beneficial impact on natural killer (NK) cells' ability to recognize and eliminate human colon cancer cells, without any side effects for normal colon epithelial cells. The direct anticancer effect of the tested compounds has been also shown. The mixture of oligosaccharides found in this extract was characterized by chemical analyses and via FT-IR spectroscopy and MALDI-TOF MS techniques. The YGB preparation contained 26.9% of proteins and 64.2% of sugars, mostly glucose (54.7%) and fructose (42.7%), with a small amount of mannose (2.6%) and galactose (less than 0.5%). Mass spectrometry analysis of YGB has shown that fructose oligomers contained from 3 to 19 sugar units. The number of fructans was estimated to be about 10.2% of the dry weight basis of YGB. The presented results suggest the beneficial effect of the consumption of preparations based on young barley on the human body, in the field of colon cancer prevention.


Asunto(s)
Hordeum
5.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884793

RESUMEN

Multimodal spectroscopic imaging methods such as Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI MSI), Fourier Transform Infrared spectroscopy (FT-IR) and Raman spectroscopy were used to monitor the changes in distribution and to determine semi quantitatively selected metabolites involved in nitrogen fixation in pea root nodules. These approaches were used to evaluate the effectiveness of nitrogen fixation by pea plants treated with biofertilizer preparations containing Nod factors. To assess the effectiveness of biofertilizer, the fresh and dry masses of plants were determined. The biofertilizer was shown to be effective in enhancing the growth of the pea plants. In case of metabolic changes, the biofertilizer caused a change in the apparent distribution of the leghaemoglobin from the edges of the nodule to its centre (the active zone of nodule). Moreover, the enhanced nitrogen fixation and presumably the accelerated maturation form of the nodules were observed with the use of a biofertilizer.


Asunto(s)
Fijación del Nitrógeno/fisiología , Pisum sativum/metabolismo , Rhizobium leguminosarum/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Fertilizantes/microbiología , Leghemoglobina/metabolismo , Pisum sativum/crecimiento & desarrollo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman
6.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383833

RESUMEN

The structure of lipid A from lipopolysaccharide (LPS) of Rhodomicrobium vannielii ATCC 17100 (Rv) a phototrophic, budding bacterium was re-investigated using high-resolution mass spectrometry, NMR, and chemical degradation protocols. It was found that the (GlcpN)-disaccharide lipid A backbone was substituted by a GalpA residue that was connected to C-1 of proximal GlcpN. Some of this GalpA residue was ß-eliminated by alkaline de-acylation, which indicated the possibility of the presence of another so far unidentified substituent at C-4 in non-stoichiometric amounts. One Manp residue substituted C-4' of distal GlcpN. The lipid A backbone was acylated by 16:0(3-OH) at C-2 of proximal GlcpN, and by 16:0(3-OH), i17:0(3-OH), or 18:0(3-OH) at C-2' of distal GlcpN. Two acyloxy-acyl moieties that were mainly formed by 14:0(3-O-14:0) and 16:0(3-O-22:1) occupied the distal GlcpN of lipid A. Genes that were possibly involved in the modification of Rv lipid A were compared with bacterial genes of known function. The biological activity was tested at the model of human mononuclear cells (MNC), showing that Rv lipid A alone does not significantly stimulate MNC. At low concentrations of toxic Escherichia coli O111:B4 LPS, pre-incubation with Rv lipid A resulted in a substantial reduction of activity, but, when higher concentrations of E. coli LPS were used, the stimulatory effect was increased.


Asunto(s)
Lípido A/química , Rhodomicrobium/química , Cromatografía Liquida , Humanos , Lipopolisacáridos/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Estructura Molecular , Procesos Fototróficos , Rhodomicrobium/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
7.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121154

RESUMEN

The free-living Gram-negative bacterium Oligotropha carboxidovorans (formerly: Pseudomonas carboxydovorans), isolated from wastewater, is able to live in aerobic and, facultatively, in autotrophic conditions, utilizing carbon monoxide or hydrogen as a source of energy. The structure of O. carboxidovorans lipid A, a hydrophobic part of lipopolysaccharide, was studied using NMR spectroscopy and high-resolution mass spectrometry (MALDI-ToF MS) techniques. It was demonstrated that the lipid A backbone is composed of two d-GlcpN3N residues connected by a ß-(1→6) glycosidic linkage, substituted by galacturonic acids (d-GalpA) at C-1 and C-4' positions. Both diaminosugars are symmetrically substituted by 3-hydroxy fatty acids (12:0(3-OH) and 18:0(3-OH)). Ester-linked secondary acyl residues (i.e., 18:0, and 26:0(25-OH) and a small amount of 28:0(27-OH)) are located in the distal part of lipid A. These very long-chain hydroxylated fatty acids (VLCFAs) were found to be almost totally esterified at the (ω-1)-OH position with malic acid. Similarities between the lipid A of O. carboxidovorans and Mesorhizobium loti, Rhizobium leguminosarum, Caulobacter crescentus as well as Aquifex pyrophylus were observed and discussed from the perspective of the genomic context of these bacteria.


Asunto(s)
Bradyrhizobiaceae/metabolismo , Ácidos Hexurónicos/química , Lípido A/química , Malatos/química , Sustitución de Aminoácidos , Bradyrhizobiaceae/química , Bradyrhizobiaceae/genética , Secuencia de Carbohidratos , Lípido A/genética , Lípido A/metabolismo , Espectroscopía de Resonancia Magnética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
Molecules ; 25(3)2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32019268

RESUMEN

Exopolymeric substances (EPS) can determine plant-microorganism interactions and have great potential as bioactive compounds. The different amounts of EPS obtained from cultures of three endophytic Fusarium culmorum strains with different aggressiveness-growth promoting (PGPF), deleterious (DRMO), and pathogenic towards cereal plants-depended on growth conditions. The EPS concentrations (under optimized culture conditions) were the lowest (0.2 g/L) in the PGPF, about three times higher in the DRMO, and five times higher in the pathogen culture. The EPS of these strains differed in the content of proteins, phenolic components, total sugars, glycosidic linkages, and sugar composition (glucose, mannose, galactose, and smaller quantities of arabinose, galactosamine, and glucosamine). The pathogen EPS exhibited the highest total sugar and mannose concentration. FTIR analysis confirmed the ß configuration of the sugars. The EPS differed in the number and weight of polysaccharidic subfractions. The EPS of PGPF and DRMO had two subfractions and the pathogen EPS exhibited a subfraction with the lowest weight (5 kDa). The three EPS preparations (ethanol-precipitated EP, crude C, and proteolysed P) had antioxidant activity (particularly high for the EP-EPS soluble in high concentrations). The EP-EPS of the PGPF strain had the highest antioxidant activity, most likely associated with the highest content of phenolic compounds in this EPS.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Grano Comestible/efectos de los fármacos , Matriz Extracelular de Sustancias Poliméricas/química , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Fusarium/fisiología , Antioxidantes/aislamiento & purificación , Grano Comestible/microbiología , Interacciones Huésped-Patógeno
9.
Mol Biol Rep ; 46(6): 5977-5982, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31440877

RESUMEN

Novel α-(1 → 3)-glucooligosaccharides (α-(1 → 3)-GOS) were prepared by acid hydrolysis of α-(1→ 3)-glucan isolated from Fomitopsis betulina fruiting bodies and characterized. Their anti-cancer potential was evaluated in in vitro assays in a colon cancer cell model. The tested α-(1 → 3)-GOS showed antiproliferative (MTT assay) and pro-apoptotic (Annexin V-FITC and PI technique) features against colon cancer but not against normal epithelial colon cells. Additionally, we did not observe cytotoxic activity (neutral red and lactate dehydrogenase assays) of α-(1 → 3)-GOS against several types of normal cell lines. In the present study, we demonstrated the anticancer potential of α-(1 → 3)-GOS in a colon carcinoma model. The anti-tumour effect of α-(1 → 3)-GOS is related with induction of apoptosis. Based on these results, we conclude that α-(1 → 3)-GOS may be considered as a dietary or therapeutic agent with an ability to inhibit the growth of cancer cells.


Asunto(s)
Coriolaceae/química , Coriolaceae/metabolismo , Glucanos/química , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon , Cuerpos Fructíferos de los Hongos/química , Cuerpos Fructíferos de los Hongos/metabolismo , Glucanos/metabolismo , Glucanos/farmacología , Humanos , Hidrólisis , Ratones , Oligosacáridos/química , Oligosacáridos/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
10.
Int J Mol Sci ; 21(1)2019 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-31881739

RESUMEN

A simple, low-cost, and reproducible method for creating materials with even silver nanoparticles (AgNP) dispersion was established. Chitosan nanofibers with silica phase (CS/silica) were synthesized by an electrospinning technique to obtain highly porous 3D nanofiber scaffolds. Silver nanoparticles in the form of a well-dispersed metallic phase were synthesized in an external preparation step and embedded in the CS/silica nanofibers by deposition for obtaining chitosan nanofibers with silica phase decorated by silver nanoparticles (Ag/CS/silica). The antibacterial activity of investigated materials was tested using Gram-positive and Gram-negative bacteria. The results were compared with the properties of the nanocomposite without silver nanoparticles and a colloidal solution of AgNP. The minimum inhibitory concentration (MIC) of obtained AgNP against Staphylococcus aureus (S. aureus) ATCC25923 and Escherichia coli (E. coli) ATCC25922 was determined. The physicochemical characterization of Ag/CS/silica nanofibers using various analytical techniques, as well as the applicability of these techniques in the characterization of this type of nanocomposite, is presented. The resulting Ag/CS/silica nanocomposites (Ag/CS/silica nanofibers) were characterized by small angle X-ray scattering (SAXS), X-ray diffraction (XRD), and atomic force microscopy (AFM). The morphology of the AgNP in solution, both initial and extracted from composite, the properties of composites, the size, and crystallinity of the nanoparticles, and the characteristics of the chitosan fibers were determined by electron microscopy (SEM and TEM).


Asunto(s)
Antibacterianos/química , Quitosano/química , Nanopartículas del Metal/química , Nanofibras/química , Dióxido de Silicio/química , Plata/química , Antibacterianos/farmacología , Pruebas Antimicrobianas de Difusión por Disco , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(2): 196-209, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27836696

RESUMEN

This review focuses on the chemistry and structures of (Brady)rhizobium lipids A, indispensable parts of lipopolysaccharides. These lipids contain unusual (ω-1) hydroxylated very long chain fatty acids, which are synthesized by a very limited group of bacteria, besides rhizobia. The significance and requirement of the very long chain fatty acids for outer membrane stability as well as the genetics of the synthesis pathway are discussed. The biological role of these fatty acids for bacterial life in extremely different environments (soil and intracellular space within nodules) is also considered.


Asunto(s)
Bacterias/metabolismo , Lípidos/fisiología , Lipopolisacáridos/metabolismo , Fijación del Nitrógeno/fisiología , Nitrógeno/metabolismo , Ácidos Grasos/metabolismo , Rhizobium/metabolismo
12.
Antonie Van Leeuwenhoek ; 110(11): 1413-1433, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28409238

RESUMEN

The structure of lipid A from lipopolysaccharide of Phyllobacterium trifolii PETP02T, a nitrogen-fixing symbiotic bacterium, was studied. It was found that the lipid A backbone was composed of two 2,3-diamino-2,3-dideoxy-D-glucose (GlcpN3N) residues connected by a ß-(1 â†’ 6) glycosidic linkage, substituted by galacturonic acid (GalpA) at position C-1 and partly decorated by a phosphate residue at C-4' of the non-reducing GlcpN3N. Both diaminosugars were symmetrically substituted by 3-hydroxy fatty acids (14:0(3-OH) and 16:0(3-OH)). Ester-linked secondary acyl residues [i.e. 19:0cyc and 28:0(27-OH) or 28:0(27-4:0(3-OMe))] were located in the distal part of lipid A. A high similarity between the lipid A of P. trifolii and Mesorhizobium was observed and discussed from the perspective of the genetic context of both genomes.


Asunto(s)
Lípido A/química , Lipopolisacáridos/química , Phyllobacteriaceae/química , Ácidos Grasos/análisis , Glucosamina/análogos & derivados , Glucosamina/química , Ácidos Hexurónicos/química , Lípido A/biosíntesis , Lípido A/aislamiento & purificación , Lipopolisacáridos/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Mesorhizobium/química , Mesorhizobium/genética , Redes y Vías Metabólicas/genética , Phyllobacteriaceae/genética , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
J Biol Chem ; 289(51): 35644-55, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25371196

RESUMEN

The chemical structures of the unusual hopanoid-containing lipid A samples of the lipopolysaccharides (LPS) from three strains of Bradyrhizobium (slow-growing rhizobia) have been established. They differed considerably from other Gram-negative bacteria in regards to the backbone structure, the number of ester-linked long chain hydroxylated fatty acids, as well as the presence of a tertiary residue that consisted of at least one molecule of carboxyl-bacteriohopanediol or its 2-methyl derivative. The structural details of this type of lipid A were established using one- and two-dimensional NMR spectroscopy, chemical composition analyses, and mass spectrometry techniques (electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry and MALDI-TOF-MS). In these lipid A samples the glucosamine disaccharide characteristic for enterobacterial lipid A was replaced by a 2,3-diamino-2,3-dideoxy-d-glucopyranosyl-(GlcpN3N) disaccharide, deprived of phosphate residues, and substituted by an α-d-Manp-(1→6)-α-d-Manp disaccharide substituting C-4' of the non-reducing (distal) GlcpN3N, and one residue of galacturonic acid (d-GalpA) α-(1→1)-linked to the reducing (proximal) amino sugar residue. Amide-linked 12:0(3-OH) and 14:0(3-OH) were identified. Some hydroxy groups of these fatty acids were further esterified by long (ω-1)-hydroxylated fatty acids comprising 26-34 carbon atoms. As confirmed by mass spectrometry techniques, these long chain fatty acids could form two or three acyloxyacyl residues. The triterpenoid derivatives were identified as 34-carboxyl-bacteriohopane-32,33-diol and 34-carboxyl-2ß-methyl-bacteriohopane-32,33-diol and were covalently linked to the (ω-1)-hydroxy group of very long chain fatty acid in bradyrhizobial lipid A. Bradyrhizobium japonicum possessed lipid A species with two hopanoid residues.


Asunto(s)
Bradyrhizobium/química , Ácidos Grasos/química , Lípido A/química , Lipopolisacáridos/química , Bradyrhizobium/clasificación , Secuencia de Carbohidratos , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Estructura Molecular , Especificidad de la Especie , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Triterpenos/química
14.
Mar Drugs ; 11(4): 1235-55, 2013 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-23595053

RESUMEN

Chemical analyses and mass spectrometry were used to study the structure of the lipopolysaccharide (LPS) isolated from Aeromonas bestiarum strain K296, serotype O18. ESI-MS revealed that the most abundant A. bestiarum LPS glycoforms have a hexa-acylated or tetra-acylated lipid A with conserved architecture of the backbone, consisting of a 1,4'-bisphosphorylated ß-(1→6)-linked D-GlcN disaccharide with an AraN residue as a non-stoichiometric substituent and a core oligosaccharide composed of Kdo1Hep6Hex1HexN1P1. 1D and 2D NMR spectroscopy revealed that the O-specific polysaccharide (OPS) of A. bestiarum K296 consists of a branched tetrasaccharide repeating unit containing two 6-deoxy-l-talose (6dTalp), one Manp and one GalpNAc residues; thus, it is similar to that of the OPS of A. hydrophila AH-3 (serotype O34) in both the sugar composition and the glycosylation pattern. Moreover, 3-substituted 6dTalp was 2-O-acetylated and additional O-acetyl groups were identified at O-2 and O-4 (or O-3) positions of the terminal 6dTalp. Western blots with polyclonal rabbit sera showed that serotypes O18 and O34 share some epitopes in the LPS. The very weak reaction of the anti-O34 serum with the O-deacylated LPS of A. bestiarum K296 might have been due to the different O-acetylation pattern of the terminal 6dTalp. The latter suggestion was further confirmed by NMR.


Asunto(s)
Aeromonas/metabolismo , Carpas/microbiología , Lipopolisacáridos/inmunología , Aeromonas/aislamiento & purificación , Animales , Western Blotting , Lipopolisacáridos/química , Lipopolisacáridos/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Conejos , Espectrometría de Masa por Ionización de Electrospray
15.
Carbohydr Res ; 524: 108760, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36753890

RESUMEN

O-specific polysaccharides (O-PSs) isolated from lipopolysaccharides of Serratia spp., strains 10.1WK and 1XS, which are endophytic bacteria of Oenothera biennis (common evening-primrose) and Lotus corniculatus (bird's-foot trefoil), plants growing on a petroleum hydrocarbon polluted site in the Silesia region, were investigated. The high-molecular-weight O-PS fractions liberated from lipopolysaccharides by mild acid hydrolysis were studied using chemical methods, MALDI-TOF mass spectrometry, and a set of 1D and 2D NMR spectroscopy techniques. It was found that both O-specific polysaccharides were built of an identical trisaccharide repeating unit composed of d-Rhap and d-Manp residues. The following structure of the O-PSs of Serratia spp. strains 10.1WK and 1XS was established: →4)-α-d-Rhap-(1 â†’ 3)-ß-d-Manp-(1 â†’ 4)-ß-d-Rhap-(1→.


Asunto(s)
Lipopolisacáridos , Antígenos O , Serratia , Endófitos , Lipopolisacáridos/química , Espectroscopía de Resonancia Magnética/métodos , Antígenos O/química , Serratia/química , Lotus/microbiología , Oenothera/microbiología
16.
Pathogens ; 12(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36986333

RESUMEN

Multilamellar bodies (MLBs) are membrane-bound cytoplasmic organelles of lysosomal origin. In some protozoa, they were considered as lipid storage secretory organelles and feasible participants in cell-to-cell communication. However, for Acanthamoeba castellanii, similar vesicles were indicated only as possible transmission vectors of several pathogenic bacteria without attributing them biological roles and activities. Since amoebae belonging to the genus Acanthamoeba are not only of environmental but also of clinical significance, it is of great importance to fully understand their physiology. Thus, determination of MLB lipid composition could partly address these questions. Because MLBs are secreted by amoebae as a result of bacteria digestion, the co-culture technique with the use of "edible" Klebsiella aerogenes was used for their production. Lipids obtained from The MLB fraction, previously purified from bacterial debris, were analyzed by high-performance thin-layer chromatography, gas chromatography coupled with mass spectrometry, and high-resolution mass spectrometry. Lipidomic analysis revealed that in MLBs, a very abundant lipid class was a non-phosphorous, polar glycerolipids, diacylglyceryl-O-(N,N,N)-trimethylhomoserine (DGTS). Since DGTSs are regarded as a source of nitrogen and fatty acids, MLBs can be considered as lipid storage organelles produced in stress conditions. Further, the identification of phytoceramides and possible new betaine derivatives indicates that MLBs might have a distinct bioactive potential.

17.
Carbohydr Res ; 525: 108779, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36893494

RESUMEN

The O-specific polysaccharide (OPS) was isolated from the lipopolysaccharide of Pseudomonas sp. Strain L1, the endophytic bacteria of Lolium perenne (ryegrass) plants growing in soil in an industrial area in the Silesia region (Zabrze, Southern Poland). The high-molecular-weight O-PS fraction liberated from Pseudomonas sp. L1 lipopolysaccharide by mild acid hydrolysis was studied using chemical methods, MALDI-TOF mass spectrometry, and 1D and 2D NMR spectroscopy techniques. It was found that the O-specific polysaccharide was built of tetrasaccharide repeating units composed of d-FucpN, d-Fucp4N, and two d-QuipN residues. The following structure of the O-PS of Pseudomonas sp. Strain L1 was established: [Formula: see text].


Asunto(s)
Lipopolisacáridos , Antígenos O , Antígenos O/química , Lipopolisacáridos/química , Pseudomonas , Secuencia de Carbohidratos , Espectroscopía de Resonancia Magnética
18.
J Hazard Mater ; 428: 128228, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033916

RESUMEN

The modification of clay minerals by exopolysaccharides (EPSs) may significantly increase their adsorption capacity. Therefore, this study focused on the impact of the EPS synthesised by the soil bacterium Rhizobium leguminosarum bv. trifolii on the adsorptive features of montmorillonite relative to two heavy metal ions (cadmium/Cd(II) and chromium/Cr(VI)) and a pesticide (carboxin). The characterization of montmorillonite was carried out using various methods: X-ray diffraction, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy. The adsorption/desorption data were modelled using theoretical equations (Langmuir-Freundlich, Redlich-Peterson, etc.). The obtained results showed that EPS promoted the accumulation of heavy metals on the clay mineral and, simultaneously, contributed to a lower degree of their desorption. This resulted from complexation between the biopolymer and the Cd(II)/Cr(VI) ions. After montmorillonite modification with 100 mg/L EPS, the maximum noted growth in Cd(II) adsorption was 26.10%, whereas it was 20.30% for Cr(VI). The adsorbed amounts of Cd(II) and Cr(VI) were then 24.24 and 14.45 mg/g, respectively. In the case of carboxin, the EPS effect on its adsorption/desorption rates was opposite - its adsorption level decreasing by 10.80%, was 0.27 mg/g. Thus, the presence of EPS-producing bacteria could reduce the bioavailability of the heavy metals, but not of the selected pesticide.


Asunto(s)
Bentonita , Rhizobium leguminosarum , Adsorción , Cadmio , Carboxina , Cromo , Concentración de Iones de Hidrógeno , Iones
19.
Materials (Basel) ; 14(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924565

RESUMEN

To obtain insight into physicochemical interactions between Cu(II) ions, kaolinite, and exopolysaccharide (EPS) synthesized by Sinorhizobium meliloti Rm 1021 soil bacteria, an adsorption, electrokinetic, and aggregation study was performed in the selected systems. The obtained data showed that supporting electrolyte type affects both EPS and Cu(II) ions adsorption. For initial Cu(II) concentration 100 mg/L, 4.36 ± 0.25 mg/g (21.80 ± 1.00%) of the ions were adsorbed in 0.001 M NaCl and 3.76 ± 0.20 mg/g (18.80 ± 1.00%) in 0.001 M CaCl2. The experimental data were best fitted to the Langmuir model as well as pseudo second-order equation. The EPS adsorbed amount on kaolinite was higher in the CaCl2 electrolyte than in NaCl one. For an initial polymer concentration of 100 mg/L, the EPS adsorbed amount was 4.69 ± 0.08 mg/g (23.45 ± 0.40%) in 0.001 M NaCl and 5.26 ± 0.15 mg/g (26.32 ± 0.75%) in 0.001 M CaCl2. In the mixed system, regardless of electrolyte type, exopolysaccharide contributed to immobilization of higher amount of copper(II) ions on the clay mineral. Also, in the samples containing heavy metal ions and exopolysaccharide simultaneously, the aggregation of kaolinite particles was the strongest. The results presented in the paper may be very helpful in soil bioremediation, especially in the development of technologies reducing the mobility of heavy metals in the environment.

20.
Chemistry ; 16(9): 2922-9, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20087912

RESUMEN

The chemical structure of the lipid A of the lipopolysaccharide (LPS) from Bradyrhizobium elkanii USDA 76 (a member of the group of slow-growing rhizobia) has been established. It differed considerably from lipids A of other Gram-negative bacteria, in that it completely lacks negatively charged groups (phosphate or uronic acid residues); the glucosamine (GlcpN) disaccharide backbone is replaced by one consisting of 2,3-dideoxy-2,3-diamino-D-glucopyranose (GlcpN3N) and it contains two long-chain fatty acids, which is unusual among rhizobia. The GlcpN3N disaccharide was further substituted by three D-mannopyranose (D-Manp) residues, together forming a pentasaccharide. To establish the structural details of this molecule, 1D and 2D NMR spectroscopy, chemical composition analyses and high-resolution mass spectrometry methods (electrospray ionisation Fourier-transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) and tandem mass spectrometry (MS/MS)) were applied. By using 1D and 2D NMR spectroscopy experiments, it was confirmed that one D-Manp was linked to C-1 of the reducing GlcpN3N and an alpha-(1-->6)-linked D-Manp disaccharide was located at C-4' of the non-reducing GlcpN3N (alpha-linkage). Fatty acid analysis identified 12:0(3-OH) and 14:0(3-OH), which were amide-linked to GlcpN3N. Other lipid A constituents were long (omega-1)-hydroxylated fatty acids with 26-33 carbon atoms, as well as their oxo forms (28:0(27-oxo) and 30:0(29-oxo)). The 28:0(27-OH) was the most abundant acyl residue. As confirmed by high-resolution mass spectrometry techniques, these long-chain fatty acids created two acyloxyacyl residues with the 3-hydroxy fatty acids. Thus, lipid A from B. elkanii comprised six acyl residues. It was also shown that one of the acyloxyacyl residues could be further acylated by 3-hydroxybutyric acid (linked to the (omega-1)-hydroxy group).


Asunto(s)
Bradyrhizobium/metabolismo , Lípido A/química , Lipopolisacáridos/química , Manosa/química , Secuencia de Carbohidratos , Lipopolisacáridos/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA