Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 184(5): 1330-1347.e13, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33636130

RESUMEN

Osteoclasts are large multinucleated bone-resorbing cells formed by the fusion of monocyte/macrophage-derived precursors that are thought to undergo apoptosis once resorption is complete. Here, by intravital imaging, we reveal that RANKL-stimulated osteoclasts have an alternative cell fate in which they fission into daughter cells called osteomorphs. Inhibiting RANKL blocked this cellular recycling and resulted in osteomorph accumulation. Single-cell RNA sequencing showed that osteomorphs are transcriptionally distinct from osteoclasts and macrophages and express a number of non-canonical osteoclast genes that are associated with structural and functional bone phenotypes when deleted in mice. Furthermore, genetic variation in human orthologs of osteomorph genes causes monogenic skeletal disorders and associates with bone mineral density, a polygenetic skeletal trait. Thus, osteoclasts recycle via osteomorphs, a cell type involved in the regulation of bone resorption that may be targeted for the treatment of skeletal diseases.


Asunto(s)
Resorción Ósea/patología , Osteoclastos/patología , Ligando RANK/metabolismo , Animales , Apoptosis , Resorción Ósea/metabolismo , Fusión Celular , Células Cultivadas , Humanos , Macrófagos/citología , Ratones , Osteocondrodisplasias/tratamiento farmacológico , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patología , Osteoclastos/metabolismo , Transducción de Señal
3.
Hum Mol Genet ; 25(14): 2997-3010, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27260401

RESUMEN

Activating FGFR3 mutations in human result in achondroplasia (ACH), the most frequent form of dwarfism, where cartilages are severely disturbed causing long bones, cranial base and vertebrae defects. Because mandibular development and growth rely on cartilages that guide or directly participate to the ossification process, we investigated the impact of FGFR3 mutations on mandibular shape, size and position. By using CT scan imaging of ACH children and by analyzing Fgfr3Y367C/+ mice, a model of ACH, we show that FGFR3 gain-of-function mutations lead to structural anomalies of primary (Meckel's) and secondary (condylar) cartilages of the mandible, resulting in mandibular hypoplasia and dysmorphogenesis. These defects are likely related to a defective chondrocyte proliferation and differentiation and pan-FGFR tyrosine kinase inhibitor NVP-BGJ398 corrects Meckel's and condylar cartilages defects ex vivo. Moreover, we show that low dose of NVP-BGJ398 improves in vivo condyle growth and corrects dysmorphologies in Fgfr3Y367C/+ mice, suggesting that postnatal treatment with NVP-BGJ398 mice might offer a new therapeutic strategy to improve mandible anomalies in ACH and others FGFR3-related disorders.


Asunto(s)
Acondroplasia/genética , Cartílago/anomalías , Mandíbula/anomalías , Cóndilo Mandibular/anomalías , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Acondroplasia/diagnóstico por imagen , Acondroplasia/tratamiento farmacológico , Acondroplasia/fisiopatología , Animales , Cartílago/crecimiento & desarrollo , Cartílago/fisiopatología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Condrocitos/metabolismo , Condrocitos/patología , Modelos Animales de Enfermedad , Humanos , Mandíbula/crecimiento & desarrollo , Mandíbula/fisiopatología , Cóndilo Mandibular/crecimiento & desarrollo , Cóndilo Mandibular/fisiopatología , Ratones , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Compuestos de Fenilurea/administración & dosificación , Inhibidores de Proteínas Quinasas/administración & dosificación , Pirimidinas/administración & dosificación
4.
Hum Mol Genet ; 23(11): 2914-25, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24419316

RESUMEN

FGFR3 gain-of-function mutations lead to both chondrodysplasias and craniosynostoses. Achondroplasia (ACH), the most frequent dwarfism, is due to an FGFR3-activating mutation which results in impaired endochondral ossification. The effects of the mutation on membranous ossification are unknown. Fgfr3(Y367C/+) mice mimicking ACH and craniofacial analysis of patients with ACH and FGFR3-related craniosynostoses provide an opportunity to address this issue. Studying the calvaria and skull base, we observed abnormal cartilage and premature fusion of the synchondroses leading to modifications of foramen magnum shape and size in Fgfr3(Y367C/+) mice, ACH and FGFR3-related craniosynostoses patients. Partial premature fusion of the coronal sutures and non-ossified gaps in frontal bones were also present in Fgfr3(Y367C/+) mice and ACH patients. Our data provide strong support that not only endochondral ossification but also membranous ossification is severely affected in ACH. Demonstration of the impact of FGFR3 mutations on craniofacial development should initiate novel pharmacological and surgical therapeutic approaches.


Asunto(s)
Acondroplasia/enzimología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Acondroplasia/genética , Acondroplasia/patología , Animales , Condrocitos/citología , Condrocitos/enzimología , Femenino , Humanos , Lactante , Masculino , Ratones , Ratones Transgénicos , Mutación Missense , Osificación Heterotópica , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Cráneo/anatomía & histología , Cráneo/embriología , Cráneo/enzimología , Cráneo/patología
5.
JCI Insight ; 8(12)2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37345656

RESUMEN

Hypochondroplasia (HCH) is a mild dwarfism caused by missense mutations in fibroblast growth factor receptor 3 (FGFR3), with the majority of cases resulting from a heterozygous p.Asn540Lys gain-of-function mutation. Here, we report the generation and characterization of the first mouse model (Fgfr3Asn534Lys/+) of HCH to our knowledge. Fgfr3Asn534Lys/+ mice exhibited progressive dwarfism and impairment of the synchondroses of the cranial base, resulting in defective formation of the foramen magnum. The appendicular and axial skeletons were both severely affected and we demonstrated an important role of FGFR3 in regulation of cortical and trabecular bone structure. Trabecular bone mineral density (BMD) of long bones and vertebral bodies was decreased, but cortical BMD increased with age in both tibiae and femurs. These results demonstrate that bones in Fgfr3Asn534Lys/+ mice, due to FGFR3 activation, exhibit some characteristics of osteoporosis. The present findings emphasize the detrimental effect of gain-of-function mutations in the Fgfr3 gene on long bone modeling during both developmental and aging processes, with potential implications for the management of elderly patients with hypochondroplasia and osteoporosis.


Asunto(s)
Enanismo , Osteoporosis , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos , Animales , Ratones , Calcificación Fisiológica , Enanismo/genética , Mutación con Ganancia de Función , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética
6.
Nat Commun ; 12(1): 467, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33473114

RESUMEN

Osteoarthritis causes debilitating pain and disability, resulting in a considerable socioeconomic burden, yet no drugs are available that prevent disease onset or progression. Here, we develop, validate and use rapid-throughput imaging techniques to identify abnormal joint phenotypes in randomly selected mutant mice generated by the International Knockout Mouse Consortium. We identify 14 genes with functional involvement in osteoarthritis pathogenesis, including the homeobox gene Pitx1, and functionally characterize 6 candidate human osteoarthritis genes in mouse models. We demonstrate sensitivity of the methods by identifying age-related degenerative joint damage in wild-type mice. Finally, we phenotype previously generated mutant mice with an osteoarthritis-associated polymorphism in the Dio2 gene by CRISPR/Cas9 genome editing and demonstrate a protective role in disease onset with public health implications. We hope this expanding resource of mutant mice will accelerate functional gene discovery in osteoarthritis and offer drug discovery opportunities for this common, incapacitating chronic disease.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad/genética , Osteoartritis/genética , Animales , Huesos/patología , Sistemas CRISPR-Cas , Cartílago/patología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Edición Génica , Hormona Liberadora de Gonadotropina/genética , Yoduro Peroxidasa , Ratones , Ratones Noqueados , Osteoartritis/patología , Osteoartritis/cirugía , Factores de Transcripción Paired Box/genética , Fenotipo , Yodotironina Deyodinasa Tipo II
7.
Nat Commun ; 12(1): 2444, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953184

RESUMEN

Osteocytes are master regulators of the skeleton. We mapped the transcriptome of osteocytes from different skeletal sites, across age and sexes in mice to reveal genes and molecular programs that control this complex cellular-network. We define an osteocyte transcriptome signature of 1239 genes that distinguishes osteocytes from other cells. 77% have no previously known role in the skeleton and are enriched for genes regulating neuronal network formation, suggesting this programme is important in osteocyte communication. We evaluated 19 skeletal parameters in 733 knockout mouse lines and reveal 26 osteocyte transcriptome signature genes that control bone structure and function. We showed osteocyte transcriptome signature genes are enriched for human orthologs that cause monogenic skeletal disorders (P = 2.4 × 10-22) and are associated with the polygenic diseases osteoporosis (P = 1.8 × 10-13) and osteoarthritis (P = 1.6 × 10-7). Thus, we reveal the molecular landscape that regulates osteocyte network formation and function and establish the importance of osteocytes in human skeletal disease.


Asunto(s)
Enfermedades Óseas/genética , Homeostasis , Osteocitos/metabolismo , Transcriptoma , Factores de Edad , Animales , Enfermedades Óseas/metabolismo , Huesos/metabolismo , Biología Computacional , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Osteocitos/citología , Osteoporosis/genética , Análisis de Secuencia de ARN , Factores Sexuales
8.
Nat Metab ; 1(5): 584, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-32694850

RESUMEN

In the version of this article initially published, affiliation 14 was incorrect, and Deutsche Forschungsgemeinschaft grants SFB1036 and SFB1118 were missing from the Acknowledgements. The errors have been corrected in the HTML and PDF versions of the article.

9.
Nat Genet ; 51(2): 258-266, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30598549

RESUMEN

Osteoporosis is a common aging-related disease diagnosed primarily using bone mineral density (BMD). We assessed genetic determinants of BMD as estimated by heel quantitative ultrasound in 426,824 individuals, identifying 518 genome-wide significant loci (301 novel), explaining 20% of its variance. We identified 13 bone fracture loci, all associated with estimated BMD (eBMD), in ~1.2 million individuals. We then identified target genes enriched for genes known to influence bone density and strength (maximum odds ratio (OR) = 58, P = 1 × 10-75) from cell-specific features, including chromatin conformation and accessible chromatin sites. We next performed rapid-throughput skeletal phenotyping of 126 knockout mice with disruptions in predicted target genes and found an increased abnormal skeletal phenotype frequency compared to 526 unselected lines (P < 0.0001). In-depth analysis of one gene, DAAM2, showed a disproportionate decrease in bone strength relative to mineralization. This genetic atlas provides evidence linking associated SNPs to causal genes, offers new insight into osteoporosis pathophysiology, and highlights opportunities for drug development.


Asunto(s)
Densidad Ósea/genética , Predisposición Genética a la Enfermedad/genética , Osteoporosis/genética , Adulto , Anciano , Animales , Femenino , Fracturas Óseas/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple/genética
11.
Nat Metab ; 1(1): 111-124, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30886999

RESUMEN

Transferrin receptor 2 (Tfr2) is mainly expressed in the liver and controls iron homeostasis. Here, we identify Tfr2 as a regulator of bone homeostasis that inhibits bone formation. Mice lacking Tfr2 display increased bone mass and mineralization independent of iron homeostasis and hepatic Tfr2. Bone marrow transplantation experiments and studies of cell-specific Tfr2 knockout mice demonstrate that Tfr2 impairs BMP-p38MAPK signaling and decreases expression of the Wnt inhibitor sclerostin specifically in osteoblasts. Reactivation of MAPK or overexpression of sclerostin rescues skeletal abnormalities in Tfr2 knockout mice. We further show that the extracellular domain of Tfr2 binds BMPs and inhibits BMP-2-induced heterotopic ossification by acting as a decoy receptor. These data indicate that Tfr2 limits bone formation by modulating BMP signaling, possibly through direct interaction with BMP either as a receptor or as a co-receptor in a complex with other BMP receptors. Finally, the Tfr2 extracellular domain may be effective in the treatment of conditions associated with pathological bone formation.

12.
Nat Genet ; 49(10): 1468-1475, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28869591

RESUMEN

Osteoporosis is a common disease diagnosed primarily by measurement of bone mineral density (BMD). We undertook a genome-wide association study (GWAS) in 142,487 individuals from the UK Biobank to identify loci associated with BMD as estimated by quantitative ultrasound of the heel. We identified 307 conditionally independent single-nucleotide polymorphisms (SNPs) that attained genome-wide significance at 203 loci, explaining approximately 12% of the phenotypic variance. These included 153 previously unreported loci, and several rare variants with large effect sizes. To investigate the underlying mechanisms, we undertook (1) bioinformatic, functional genomic annotation and human osteoblast expression studies; (2) gene-function prediction; (3) skeletal phenotyping of 120 knockout mice with deletions of genes adjacent to lead independent SNPs; and (4) analysis of gene expression in mouse osteoblasts, osteocytes and osteoclasts. The results implicate GPC6 as a novel determinant of BMD, and also identify abnormal skeletal phenotypes in knockout mice associated with a further 100 prioritized genes.


Asunto(s)
Densidad Ósea/genética , Calcáneo/patología , Estudio de Asociación del Genoma Completo , Osteoporosis/genética , Polimorfismo de Nucleótido Simple , Animales , Modelos Animales de Enfermedad , Femenino , Fémur/química , Perfilación de la Expresión Génica , Glipicanos/deficiencia , Glipicanos/genética , Glipicanos/fisiología , Trastornos del Crecimiento/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Anotación de Secuencia Molecular , Osteoblastos/metabolismo , Osteocondrodisplasias/congénito , Osteocondrodisplasias/genética , Osteoclastos/metabolismo , Osteocitos/metabolismo , Osteoporosis/patología , Fenotipo
13.
J Clin Invest ; 126(5): 1871-84, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-27064282

RESUMEN

Achondroplasia (ACH) is the most frequent form of dwarfism and is caused by gain-of-function mutations in the fibroblast growth factor receptor 3-encoding (FGFR3-encoding) gene. Although potential therapeutic strategies for ACH, which aim to reduce excessive FGFR3 activation, have emerged over many years, the use of tyrosine kinase inhibitor (TKI) to counteract FGFR3 hyperactivity has yet to be evaluated. Here, we have reported that the pan-FGFR TKI, NVP-BGJ398, reduces FGFR3 phosphorylation and corrects the abnormal femoral growth plate and calvaria in organ cultures from embryos of the Fgfr3Y367C/+ mouse model of ACH. Moreover, we demonstrated that a low dose of NVP-BGJ398, injected subcutaneously, was able to penetrate into the growth plate of Fgfr3Y367C/+ mice and modify its organization. Improvements to the axial and appendicular skeletons were noticeable after 10 days of treatment and were more extensive after 15 days of treatment that started from postnatal day 1. Low-dose NVP-BGJ398 treatment reduced intervertebral disc defects of lumbar vertebrae, loss of synchondroses, and foramen-magnum shape anomalies. NVP-BGJ398 inhibited FGFR3 downstream signaling pathways, including MAPK, SOX9, STAT1, and PLCγ, in the growth plates of Fgfr3Y367C/+ mice and in cultured chondrocyte models of ACH. Together, our data demonstrate that NVP-BGJ398 corrects pathological hallmarks of ACH and support TKIs as a potential therapeutic approach for ACH.


Asunto(s)
Acondroplasia/tratamiento farmacológico , Condrocitos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Pirimidinas/farmacología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Acondroplasia/genética , Acondroplasia/metabolismo , Acondroplasia/patología , Animales , Línea Celular Transformada , Condrocitos/patología , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Disco Intervertebral/metabolismo , Disco Intervertebral/patología , Vértebras Lumbares/metabolismo , Vértebras Lumbares/patología , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Mutantes , Fosfolipasa C gamma/genética , Fosfolipasa C gamma/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA