Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 154(21): 214701, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34240966

RESUMEN

The construction of heterojunctions has attracted considerable attention among the various strategies of water-splitting for hydrogen evolution due to their band structure advantages. In this research, we combined chemical vapor deposition and pulsed laser deposition to fabricate MoS2/g-C3N4 heterojunction films on indium-tin oxide glass substrates, and we studied the photoelectrochemical (PEC) performance. The x-ray diffraction, x-ray photoelectron spectroscopy (XPS), and scanning electron microscope characterizations suggested the successful preparation of MoS2/g-C3N4 heterojunction films. In particular, the shifts of the peak positions in the XPS spectra indicated the formation of a strong interaction between the g-C3N4 and MoS2 films. After depositing MoS2 on the g-C3N4 film, the visible-light absorption was enhanced and broadened, the electrical conductivity improved, and the intensity of the photoluminescence peak decreased. As a result, the greater generation, faster transport, and lower recombination rate of electrons and holes caused the heterojunction films to show higher PEC performance. More importantly, the obtained MoS2/g-C3N4 film was confirmed to be an n-n type heterojunction and to have a typical type-II band structure, which could indeed suppress the recombination and promote the separation, transfer, and transport of photogenerated electron-holes. Finally, the obtained MoS2/g-C3N4 film successfully achieved the overall water-splitting and the H2 evolution rate when the visible-light radiation reached 252 µmol/h.

2.
Materials (Basel) ; 16(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36614634

RESUMEN

One of the most important applications of photodetectors is as sensing units in imaging systems. In practical applications, a photodetector array with high uniformity and high performance is an indispensable part of the imaging system. Herein, a photodetector array (5 × 4) consisting of 20 photodetector units, in which the photosensitive layer involves preprocessing commercial ε-Ga2O3 films with high temperature annealing, have been constructed by low-cost magnetron sputtering and mask processes. The ε-Ga2O3 ultraviolet photodetector unit shows excellent responsivity and detectivity of 6.18 A/W and 5 × 1013 Jones, respectively, an ultra-high light-to-dark ratio of 1.45 × 105, and a fast photoresponse speed (0.14/0.09 s). At the same time, the device also shows good solar-blind characteristics and stability. Based on this, we demonstrate an ε-Ga2O3-thin-film-based solar-blind ultraviolet detector array with high uniformity and high performance for solar-blind imaging in optoelectronic integration applications.

3.
J Nanosci Nanotechnol ; 11(12): 11049-54, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22409054

RESUMEN

P-type conductive Mn-N co-doped ZnO films were prepared by annealing N(+)-implanted Zn0.92Mn0.08O films in a N2 ambient. Effect of the annealing on the structural, surface morphological, electrical and local chemical states of the films were investigated by X-ray diffraction (XRD), high-resolution field-emission scanning electron microscopy (FE-SEM), Hall-effect and X-ray photoelectron spectroscopy (XPS) measurements, respectively. The results indicate that all the samples were single phase and well oriented along the c-axis. The as-implanted samples were n-type semiconductors, while after thermal annealing at 650 degrees C ranging from 10 to 30 minutes, they were converted to p-type conductivity with the hole concentration of 10(16)-10(17) cm(-3). But with further increasing the annealing time or the temperature, it was observed that the p-type conductivity decreased and ultimately reverted to n-type conductivity again. The change of conductive type may be ascribed to the local chemical states evolution of nitrogen in the process of thermal annealing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA