Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 96(25): 10380-10390, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38860916

RESUMEN

To reduce the risk of atherosclerotic disease, it is necessary to not only diagnose the presence of atherosclerotic plaques but also assess the vulnerability risk of plaques. Accurate detection of the reactive oxygen species (ROS) level at plaque sites represents a reliable way to assess the plaque vulnerability. Herein, through a simple one-pot reaction, two near-infrared (NIR) fluorescent dyes, one is ROS responsive and the other is inert to ROS, are coassembled in an amphiphilic amino acid-assembled nanoparticle. In the prepared NIR fluorescent amino acid nanoparticle (named FANP), the fluorescent properties and ROS-responsive behaviors of the two fluorescent dyes are well maintained. Surface camouflage through red blood cell membrane (RBCM) encapsulation endows the finally obtained FANP@RBCM nanoprobe with not only further reduced cytotoxicity and improved biocompatibility but also increased immune escape capability, prolonged blood circulation time, and thus enhanced accumulation at atherosclerotic plaque sites. In vitro and in vivo experiments demonstrate that FANP@RBCM not only works well in probing the occurrence of atherosclerotic plaques but also enables plaque vulnerability assessment through the accurate detection of the ROS level at plaque sites in a reliable ratiometric mode, thereby holding great promise as a versatile tool for the diagnosis and risk assessment of atherosclerotic disease.


Asunto(s)
Aminoácidos , Colorantes Fluorescentes , Nanopartículas , Placa Aterosclerótica , Especies Reactivas de Oxígeno , Placa Aterosclerótica/diagnóstico por imagen , Animales , Especies Reactivas de Oxígeno/metabolismo , Colorantes Fluorescentes/química , Nanopartículas/química , Ratones , Aminoácidos/química , Humanos , Medición de Riesgo , Imagen Óptica , Rayos Infrarrojos , Células RAW 264.7
2.
Anal Chem ; 96(18): 6968-6977, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38662948

RESUMEN

The assessment of atherosclerosis (AS) progression has emerged as a prominent area of research. Monitoring various pathological features of foam cell (FC) formation is imperative to comprehensively assess AS progression. Herein, a simple benzospiropyran-julolidine-based probe, BSJD, with switchable dual-color imaging ability was developed. This probe can dynamically and reversibly adjust its molecular structure and fluorescent properties in different polar and pH environments. Such a polarity and pH dual-responsive characteristic makes it superior to single-responsive probes in dual-color imaging of lipid droplets (LDs) and lysosomes as well as monitoring their interaction. By simultaneously tracking various pathological features, including LD accumulation and size changes, lysosome dysfunction, and dynamically regulated lipophagy, more comprehensive information can be obtained for multiparameter assessment of FC formation progression. Using BSJD, not only the activation of lipophagy in the early stages and inhibition in the later phases during FC formation are clearly observed but also the important roles of lipophagy in regulating lipid metabolism and alleviating FC formation are demonstrated. Furthermore, BSJD is demonstrated to be capable of rapidly imaging FC plaque sites in AS mice with fast pharmacokinetics. Altogether, BSJD holds great promise as a dual-color organelle-imaging tool for investigating disease-related LD and lysosome changes and their interactions.


Asunto(s)
Colorantes Fluorescentes , Células Espumosas , Gotas Lipídicas , Colorantes Fluorescentes/química , Células Espumosas/metabolismo , Células Espumosas/patología , Animales , Ratones , Gotas Lipídicas/metabolismo , Gotas Lipídicas/química , Lisosomas/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/patología , Imagen Óptica , Humanos , Células RAW 264.7 , Concentración de Iones de Hidrógeno , Color
3.
Anal Chem ; 96(6): 2692-2701, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38305871

RESUMEN

In recent years, the CRISPR/Cas12a-based sensing strategy has shown significant potential for specific target detection due to its rapid and sensitive characteristics. However, the "always active" biosensors are often insufficient to manipulate nucleic acid sensing with high spatiotemporal control. It remains crucial to develop nucleic acid sensing devices that can be activated at the desired time and space by a remotely applied stimulus. Here, we integrated photoactivation with the CRISPR/Cas12a system for DNA and RNA detection, aiming to provide high spatiotemporal control for nucleic acid sensing. By rationally designing the target recognition sequence, this photoactivation CRISPR/Cas12a system could recognize HPV16 and survivin, respectively. We combined the lateral flow assay strip test with the CRISPR/Cas12a system to realize the visualization of nucleic acid cleavage signals, displaying potential instant test application capabilities. Additionally, we also successfully realized the temporary control of its fluorescent sensing activity for survivin by photoactivation in vivo, allowing rapid detection of target nucleic acids and avoiding the risk of contamination from premature leaks during storage. Our strategy suggests that the CRISPR/Cas12a platform can be triggered by photoactivation to sense various targets, expanding the technical toolbox for precise biological and medical analysis. This study represents a significant advancement in nucleic acid sensing and has potential applications in disease diagnosis and treatment.


Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , Survivin/genética , Biomarcadores , Pruebas en el Punto de Atención
4.
Anal Chem ; 96(16): 6426-6435, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38604773

RESUMEN

Sensors designed based on the trans-cleavage activity of CRISPR/Cas12a systems have opened up a new era in the field of biosensing. The current design of CRISPR/Cas12-based sensors in the "on-off-on" mode mainly focuses on programming the activator strand (AS) to indirectly switch the trans-cleavage activity of Cas12a in response to target information. However, this design usually requires the help of additional auxiliary probes to keep the activator strand in an initially "blocked" state. The length design and dosage of the auxiliary probe need to be strictly optimized to ensure the lowest background and the best signal-to-noise ratio. This will inevitably increase the experiment complexity. To solve this problem, we propose using AS after the "RESET" effect to directly regulate the Cas12a enzymatic activity. Initially, the activator strand was rationally designed to be embedded in a hairpin structure to deprive its ability to activate the CRISPR/Cas12a system. When the target is present, target-mediated strand displacement causes the conformation change in the AS, the hairpin structure is opened, and the CRISPR/Cas12a system is reactivated; the switchable structure of AS can be used to regulate the degree of activation of Cas12a according to the target concentration. Due to the advantages of low background and stability, the CRISPR/Cas12a-based strategy can not only image endogenous biomarkers (miR-21) in living cells but also enable long-term and accurate imaging analysis of the process of exogenous virus invasion of cells. Release and replication of virus genome in host cells are indispensable hallmark events of cell infection by virus; sensitive monitoring of them is of great significance to revealing virus infection mechanism and defending against viral diseases.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , MicroARNs , Sistemas CRISPR-Cas/genética , Técnicas Biosensibles/métodos , Humanos , MicroARNs/análisis , MicroARNs/metabolismo , Regulación Alostérica , Proteínas Asociadas a CRISPR/metabolismo , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Células HEK293
5.
Chembiochem ; 25(13): e202400229, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38700379

RESUMEN

Photodynamic therapy (PDT) is a newly emerged strategy for disease treatment. One challenge of the application of PDT drugs is the side-effect caused by the non-specificity of the photosensitive molecules. Most of the photosensitizers may invade not only the pathogenic cells but also the normal cells. In recent, people tried to use special cargoes to deliver the drugs into target cells. DNA nanoflowers (NFs) are a kind of newly-emerged nanomaterial which constructed through DNA rolling cycle amplification (RCA) reaction. It is reported that the DNA NFs were suitable materials which have been widely applied as nanocargos for drug delivery in cancer chemotherapeutic treatment. In this paper, we have introduced a new multifunctional DNA NF which could be prepared through an one-pot RCA reaction. This proposed DNA NF contained a versatile AS1411 G-quadruplex moiety, which plays key roles not only for specific recognition of cancer cells but also for near-infrared ray based photodynamic therapy when conjugating with a special porphyrin molecule. We demonstrated that the DNA NF showed good selectivity toward cancer cells, leading to highly efficient photo-induced cytotoxicity. Moreover, the in vivo experiment results suggested this DNA NF is a promising nanomaterial for clinical PDT.


Asunto(s)
ADN , Nanoestructuras , Fotoquimioterapia , Fármacos Fotosensibilizantes , Humanos , ADN/química , Animales , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/síntesis química , Nanoestructuras/química , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Línea Celular Tumoral
6.
J Am Chem Soc ; 145(39): 21284-21292, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37703101

RESUMEN

C-C single bond-linked covalent organic frameworks (CSBL-COFs) are extremely needed because of their excellent stabilities and potential applications in harsh conditions. However, strategies to generate CSBL-COFs are limited to the acetylenic self-homocoupling Glaser-Hay reaction or post-synthetic reduction of vinylene-based COFs. Exploring new strategies to expand the realm of CSBL-COFs is urgently needed but extremely challenging. To address the synthetic challenges, we for the first time developed a general approach via the reaction between aromatic aldehydes and active methyl group-involving monomers with enhanced acidity, which realized the successful construction of a series of CSBL-COFs. As expected, the obtained CSBL-COFs exhibited outstanding chemical stability, which can stabilize in 6 M NaOH, 3 M HCl, boiling water, and 100 mg/mL NaBH4 for at least 3 days. It is important to mention that CSBL-COFs possess a large amount of ionic sites distributed throughout the networks; gentle shaking allowed our COFs to easily self-disperse as nanoparticles and suspend in water for at least 12 h without reprecipitating. As far as we know, such self-dispersed COFs with high water dispersity are rare to date, and few examples are mainly limited to the guanidinium- and pseudorotaxane-based COFs. Our work thus developed a family of self-dispersed COFs for potential applications in different sorts of fields. Our contribution would thus pave a new avenue for constructing a broader class of CSBL-COFs for their wide applications in various fields.

7.
Anal Chem ; 95(42): 15725-15735, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37819747

RESUMEN

The trans-cleavage activity of CRISPR/Cas12a has been widely used in biosensing. However, many CRISPR/Cas12a-based biosensors, especially those that work in "on-off-on" mode, usually suffer from high background and thus impossible intracellular application. Herein, this problem is efficiently overcome by elaborately designing the activator strand (AS) of CRISPR/Cas12a using the "RESET" effect found by our group. The activation ability of the as-designed AS to CRISPR/Cas12a can be easily inhibited, thus assuring a low background for subsequent biosensing applications, which not only benefits the detection sensitivity improvement of CRISPR/Cas12a-based biosensors but also promotes their applications in live cells as well as makes it possible to design high-performance biosensors with greatly improved flexibility, thus achieving the analysis of a wide range of targets. As examples, by using different strategies such as strand displacement, strand cleavage, and aptamer-substrate interaction to reactivate the inhibited enzyme activity, several CRISPR/Cas12a-based biosensing systems are developed for the sensitive and specific detection of different targets, including nucleic acid (miR-21), biological small molecules (ATP), and enzymes (hOGG1), giving the detection limits of 0.96 pM, 8.6 µM, and 8.3 × 10-5 U/mL, respectively. Thanks to the low background, these biosensors are demonstrated to work well for the accurate imaging analysis of different biomolecules in live cells. Moreover, we also demonstrate that these sensing systems can be easily combined with lateral flow assay (LFA), thus holding great potential in point-of-care testing, especially in poorly equipped or nonlaboratory environments.


Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , Bioensayo , Procesamiento de Imagen Asistido por Computador , Oligonucleótidos
8.
Angew Chem Int Ed Engl ; 62(25): e202217230, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37082873

RESUMEN

Real-time visualization of individual viral mRNA translation activities in live cells is essential to obtain critical details of viral mRNA dynamics and to detect its transient responses to environmental stress. Fluorogenic RNA aptamers are powerful tools for real-time imaging of mRNA in live cells, but monitoring the translation activity of individual mRNAs remains a challenge due to their intrinsic photophysical properties. Here, we develop a genetically encoded turn-on 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI)-binding RNA nanozipper with superior brightness and high photostability by in situ self-assembly of multiple nanozippers along single mRNAs. The nanozipper enables real-time imaging of the mobility and dynamic translation of individual viral mRNAs in live cells, providing information on the spatial dynamics and translational elongation rate of viral mRNAs.


Asunto(s)
Biosíntesis de Proteínas , ARN , ARN/química , ARN Mensajero/metabolismo , Diagnóstico por Imagen , ARN Viral/genética
9.
Anal Chem ; 94(22): 8050-8057, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35615910

RESUMEN

The trans-cleavage activity of CRISPR/Cas12a has been widely used in biosensing applications. However, the lack of exploration on the fundamental properties of CRISPR/Cas12a not only discourages further in-depth studies of the CRISPR/Cas12a system but also limits the design space of CRISPR/Cas12a-based applications. Herein, a "RESET" effect (random extending sequences enhance trans-cleavage activity) is discovered for the activation of CRISPR/Cas12a trans-cleavage activity. That is, a single-stranded DNA, which is too short to work as the activator, can efficiently activate CRISPR/Cas12a after being extended a random sequence from its 3'-end, even when the random sequence folds into secondary structures. The finding of the "RESET" effect enriches the CRISPR/Cas12a-based sensing strategies. Based on this effect, two CRISPR/Cas12a-based biosensors are designed for the sensitive and specific detection of two biologically important enzymes.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , ADN de Cadena Simple/genética
10.
Anal Chem ; 93(48): 16231-16239, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34818886

RESUMEN

Methods to detect and quantify disease biomarkers with high specificity and sensitivity in biological fluids play a key role in enabling clinical diagnosis, including point-of-care testing. Myeloperoxidase (MPO) is an emerging biomarker for the detection of inflammation, neurodegenerative diseases, and cardiovascular disease, where excess MPO can lead to oxidative damage to biomolecules in homeostatic systems. While numerous methods have been developed for MPO analysis, most techniques are challenging in clinical applications due to the lack of amplification methods, high cost, or other practical drawbacks. Enzyme-linked immunosorbent assays are currently used for the quantification of MPO in clinical practice, which is often limited by the availability of antibodies with high affinity and specificity and the significant nonspecific binding of antibodies to the analytical surface. In contrast, nucleic acid-based biosensors are of interest because of their simplicity, fast response time, low cost, high sensitivity, and low background signal, but detection targets are limited to nucleic acids and non-nucleic acid biomarkers are rare. Recent studies reveal that the modification of a genome in the form of phosphorothioate is specifically sensitive to the oxidative effects of the MPO/H2O2/Cl- system. We developed an oxidative cleavage-based three-dimensional DNA biosensor for rapid, ratiometric detection of HOCl and MPO in a "one-pot" method, which is simple, stable, sensitive, specific, and time-saving and does not require a complex reaction process, such as PCR and enzyme involvement. The constructed biosensor has also been successfully used for MPO detection in complex samples. This strategy is therefore of great value in disease diagnosis and biomedical research.


Asunto(s)
Técnicas Biosensibles , Ácido Hipocloroso , ADN , Peróxido de Hidrógeno , Estrés Oxidativo , Peroxidasa/metabolismo
11.
Analyst ; 146(8): 2600-2608, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33721010

RESUMEN

Accurate and specific analysis of adenosine triphosphate (ATP) expression levels in living cells can provide valuable information for understanding cell metabolism, physiological activities and pathologic mechanisms. Herein, DNA nanolantern-based split aptamer nanoprobes are prepared and demonstrated to work well for in situ analysis of ATP expression in living cells. The nanoprobes, which carry multiple split aptamer units on the surface, are easily and inexpensively prepared by a "one-pot" assembly reaction of four short oligonucleotide strands. A series of characterization experiments verify that the nanoprobes have good monodispersity, strong biostability, high cell internalization efficiency, and fluorescence resonance energy transfer (FRET)-based ratiometric response to ATP in the concentration range covering the entire intracellular ATP expression level. By changing the intracellular ATP level via different treatments, the nanoprobes are demonstrated to show excellent performance in intracellular ATP expression analysis, giving a highly ATP concentration-dependent ratiometric fluorescence signal output. ATP-induced formation of large-sized DNA aggregates not only amplifies the FRET signal output, but also makes in situ ATP-imaging analysis in living cells possible. In situ responsive crosslinking of nanoprobes also makes them capable of lighting up the mitochondria of living cells. By simply changing the split aptamer sequence, the proposed DNA nanolantern-based split aptamer strategy might be easily extended to other targets.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Adenosina Trifosfato , ADN , Sondas de ADN , Mitocondrias
12.
Nucleic Acids Res ; 47(6): 2727-2738, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30715502

RESUMEN

Specific G-quadruplex-probing is crucial for both biological sciences and biosensing applications. Most reported probes are focused on fluorescent or colorimetric recognition of G-quadruplexes. Herein, for the first time, we reported a new specific G-quadruplex-probing technique-resonance light scattering (RLS)-based ratiometric recognition. To achieve the RLS probing of G-quadruplexes in the important physiological pH range of 7.4-6.0, four water soluble cationic porphyrin derivatives, including an unreported octa-cationic porphyrin, with large side arm substituents were synthesized and developed as RLS probes. These RLS probes were demonstrated to work well for ratiometric recognition of G-quadruplexes with high specificity against single- and double-stranded DNAs, including long double-stranded ones. The working mechanism was speculated to be based on the RLS signal changes caused by porphyrin protonation that was promoted by the end-stacking of porphyrins on G-quadruplexes. This work adds an important member in G-quadruplex probe family, thus providing a useful tool for studies on G-quadruplex-related events concerning G-quadruplex formation, destruction and changes in size, shape and aggregation. As a proof-of-concept example of applications, the RLS probes were demonstrated to work well for label-free and sequence-specific sensing of microRNA. This work also provides a simple and useful way for the preparation of cationic porphyrins with high charges.


Asunto(s)
G-Cuádruplex , Sondas Moleculares/síntesis química , Resonancia Magnética Nuclear Biomolecular/métodos , Ácidos Nucleicos/análisis , Porfirinas/síntesis química , Sitios de Unión , Técnicas Biosensibles/métodos , Calorimetría/métodos , Cationes/síntesis química , Cationes/química , Cationes/metabolismo , Dicroismo Circular , Luz , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Ácidos Nucleicos/aislamiento & purificación , Ácidos Nucleicos/metabolismo , Imagen Óptica/métodos , Porfirinas/química , Porfirinas/metabolismo , Estructura Secundaria de Proteína , Dispersión de Radiación
13.
Mikrochim Acta ; 188(7): 235, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34164747

RESUMEN

A heteropore covalent organic framework (COF)-based composite membrane material was prepared and proved to have a satisfactory effect on the pretreatment of vegetable samples. The composite membrane was fabricated by in situ growth of a dual-pore COF on the surface of polydopamine (PDA)-aminated non-woven (NW) fabric. Due to the difference in the strength of the interaction between the phytochromes/COF and the pesticides/COF, the removal of phytochromes and the recovery of pesticides can be achieved by adjusting the composition of the solution. Through a simple immersion or filtration operation, NW@PDA@COF composite membrane can quickly and almost completely remove interfering phytochromes in the samples. The recovery of pesticides was determined by HPLC-MS/MS, and the recovery efficiencies were 72.3~101.7% and 67.3~106.7% for immersion and filtration modes of five different vegetable samples, respectively; the RSD is between 1.1 and 19% (n = 3). The limits of detection and quantification for the 13 pesticides investigated were 0.08 µg·L-1 and 0.23 µg·L-1, respectively. A wide linear range of 1~1000 µg·L-1 was observed with R2 values from 0.9774 to 0.9998. The membrane can be repeatedly used for at least 10 times by using a facile elution treatment. Compared to other commonly used sample pretreatment materials, heteropore COF-based composite membrane is superior in terms of sorbent amount, treatment time, operation simplicity, and material reusability.

14.
Anal Chem ; 92(9): 6470-6477, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32249564

RESUMEN

Nucleic acid aptamers have been widely used in various fields such as biosensing, DNA chip, and medical diagnosis. However, the high susceptibility of nucleic acids to ubiquitous nucleases reduces the biostability of aptamers and limits their applications in biological contexts. Therefore, improving the biostability of aptamers becomes an urgent need. Herein, we present a simple strategy to resolve this problem by directly replacing the d-DNA-based aptamers with left-handed l-DNA. By testing several reported aptamers against respective targets, we found that our proposed strategy stood up well for nonchiral small molecule targets (e.g., Hemin and cationic porphyrin) and chiral targets whose interactions with aptamers are chirality-independent (e.g., ATP). We also found that the l-DNA aptamers were indeed endowed with greatly improved biostability due to the extraordinary resistance of l-DNA to nuclease digestion. With respect to other small-molecule targets whose interactions with aptamers are chirality-dependent (e.g., kanamycin) and biomacromolecules (e.g., tyrosine kinase-7), however, the proposed strategy was not entirely effective likely due to the participation of the DNA backbone chirality into the target recognition. In spite of this limitation, this strategy indeed paves an easy way to screen highly biostable aptamers important for the applications in many fields.


Asunto(s)
Adenosina Trifosfato/análisis , Aptámeros de Nucleótidos/química , ADN/química , Células HeLa , Humanos , Imagen Óptica
15.
Analyst ; 145(10): 3742-3748, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32343290

RESUMEN

A novel nucleic acid-based isothermal signal amplification strategy, named cross-boosting extension-nicking reaction (CBENR) is developed and successfully used for rapid and ultrasensitive detection of polynucleotide kinase (PNK) activity. Only two simple oligonucleotides (recognition substrate (RS) and TaqMan probe) are applied to construct the PNK-sensing platform. In the presence of PNK, the 3'-phosphate end of RS will be converted to the 3'-hydroxyl one, and then extended to a long poly-adenine (poly-A) sequence under the catalysis of terminal deoxynucleotidyl transferase (TdT). The poly-A sequence provides multiple binding sites for the TaqMan probe to form multiple DNA duplexes. Subsequently, ribonuclease HII (RNase HII) cuts the TaqMan probe into two parts at the pre-set uracil site, generating a fluorescence signal and providing new substrates for TdT elongation. The TdT-catalyzed substrate extension and RNase HII-catalyzed probe nicking are boosted by each other, resulting in persistent enlargement of these two reactions and thus giving ultrahigh signal amplification efficiency. Utilizing the CBENR-based PNK sensor, ultrasensitive detection of PNK activity was achieved with a detection limit as low as 3.0 × 10-6 U mL-1. Quantification of endogenous PNK activity at the single-cell level and the screening/evaluation of PNK inhibitors were also achieved.


Asunto(s)
Técnicas Biosensibles/métodos , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , Sondas de ADN/genética , Sondas de ADN/metabolismo , Células HeLa , Humanos
16.
Anal Chem ; 91(8): 5244-5251, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30883097

RESUMEN

An ultimate goal of synthetic DNA motor studies is to mimic natural protein motors in biological systems. Here, we rationally designed a highly integrated and biostable DNA motor system with high potential for living body operation, through simple assembly of a Mn2+-dependent DNAzyme-powered DNA motor with a degradable MnO2 nanosheet. The motor system shows outstanding high integration and improved biostability. High integration confers the motor system with the ability to deliver all the core components to the target sites as a whole, thus, enabling precise control of the spatiotemporal distribution of these components and achieving high local concentrations. At the target sites, reduction of the MnO2 nanosheet by intracellular glutathione (GSH) not only releases the DNA motor, which can then be initiated by the intracellular target, but also produces Mn2+ in situ to power the autonomous and progressive operation of the DNA motor. Interestingly, the resultant consumption of GSH in turn protects the DNA motor from destruction by physiological GSH, thus, conferring our motor system with improved biostability, reduced false-positive outputs, and consequently, an increased potential to be applied in a living body. As a proof of concept, the highly integrated DNA motor system was demonstrated to work well for amplified imaging detection of survivin mRNA (mRNA), an important tumor biomarker, in both living cancer cells and living tumor-bearing mice. This work reveals concepts and strategies promoting synthetic DNA motor applications in biological systems.


Asunto(s)
ADN de Neoplasias/química , Animales , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , ADN Catalítico/química , ADN Catalítico/metabolismo , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Glutatión/química , Células HeLa , Humanos , Compuestos de Manganeso/química , Compuestos de Manganeso/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanoestructuras/química , Neoplasias Experimentales/diagnóstico por imagen , Imagen Óptica , Óxidos/química , Óxidos/metabolismo , Tamaño de la Partícula , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Propiedades de Superficie , Survivin/química , Survivin/genética , Survivin/metabolismo
17.
Anal Chem ; 91(20): 13165-13173, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31512479

RESUMEN

The introduction of nanotechnology can overcome some inherent drawbacks of traditional DNA probes, thus promoting their applications in living cells. Herein, a three-dimensional DNA nanostructure, a DNA nanolantern, was prepared via simple nucleotide hybridization of four short-stranded oligonucleotides and successfully applied to the construction of a novel DNA probe and signal amplifier. Compared to most reported DNA nanostructures, a DNA nanolantern shows the distinct advantages of low cost, easy design and preparation, more and arbitrary adjusted probe numbers, and high fluorescence resonance energy transfer (FRET) signal readout. Compared to traditional DNA probes, the constructed nanolantern-based one has improved cell internalization efficiency, enhanced biostability, accelerated reaction kinetics, excellent biocompatibility, and greatly reduced false-positive output and was demonstrated to work well for probing the expression level of tumor-related mRNA and microRNA in living cells. The DNA nanolantern can also be easily integrated with some reported signal amplification strategies, e.g., isothermal hybridization chain reaction (HCR), and the obtained signal amplifier combines the advantages of the DNA nanolantern and the HCR, enabling sensitive imaging detection of ultralow abundance targets in living cells. This work demonstrated that this simple DNA nanostructure can not only improve the performance of traditional DNA probes but can also be easily integrated with reported DNA-based strategy and technology, thus showing a broad application prospect.


Asunto(s)
Biomarcadores de Tumor/análisis , Sondas de ADN/química , ADN/química , MicroARNs/análisis , Nanoestructuras/química , ARN Mensajero/análisis , Línea Celular Tumoral , ADN/genética , Sondas de ADN/genética , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Humanos , Límite de Detección , MicroARNs/genética , Hibridación de Ácido Nucleico , ARN Mensajero/genética , Timidina Quinasa/genética
18.
Anal Chem ; 90(14): 8629-8634, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29911858

RESUMEN

As one of the key initiators of the base excision repair process, uracil-DNA glycosylase (UDG) plays an important role in maintaining genomic integrity. It has been found that aberrant expression of UDG is associated with a variety of diseases. Thus, accurate and sensitive detection of UDG activity is of critical significance for biomedical research and early clinical diagnosis. Here, we developed a novel fluorescent sensing platform for UDG activity detection based on a terminal deoxynucleotidyl transferase (TdT) and T7 exonuclease (T7 Exo)-aided recycling amplification strategy. In this strategy, only two DNA oligonucleotides (DNA substrate containing one uracil base and Poly dT probe labeled with a fluorophore/quencher pair) are used. UDG catalyzes the removal of uracil base from the enclosed dumbbell-shape DNA substrate to give an apyrimidinic site, at which the substrate oligonucleotide is cleaved by endonuclease IV. The released 3'-end can be elongated by TdT to form a long deoxyadenine-rich (Poly dA) tail, which may be used as a recyclable template to initiate T7 Exo-mediated hybridization-digestion cycles of the Poly dT probe, giving a significantly enhanced fluorescence output. The proposed UDG-sensing strategy showed excellent selectivity and high sensitivity with a detection limit of 1.5 × 10-4 U/mL. The sensing platform was also demonstrated to work well for UDG inhibitor screening and inhibitory activity evaluation, thus holding great potential in UDG-related disease diagnosis and drug discovery. The proposed strategy can be easily used for the detection of other DNA repair-related enzymes by simply changing the recognition site in DNA substrate and might also be extended to the analysis of some DNA/RNA-processing enzymes, including restriction endonuclease, DNA methyltransferase, polynucleotide kinase, and so on.


Asunto(s)
ADN Nucleotidilexotransferasa/metabolismo , Pruebas de Enzimas/métodos , Exodesoxirribonucleasas/metabolismo , Uracil-ADN Glicosidasa/análisis , Técnicas Biosensibles/métodos , Células HeLa , Humanos , Límite de Detección , Hibridación de Ácido Nucleico/métodos , Uracil-ADN Glicosidasa/metabolismo
19.
Inorg Chem ; 56(11): 6330-6342, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28474900

RESUMEN

Cu-TMPipPrOPP and Zn-TMPipPrOPP, two new cationic metallo derivatives of TMPipPrOPP (5,10,15,20-tetrakis{4-[3-(1-methyl-1-piperidinyl)propoxy]phenyl}porphyrin), a porphyrin with four bulky side chains, were synthesized and characterized. The interactions of the new metalloporphyrins with structurally different DNAs were then compared with those of TMPipPrOPP. The introduction of bulky side chains provides the porphyrin derivatives with excellent binding specificity for G-quadruplex DNA, which is reflected by (1) the significantly different optical responses of TMPipPrOPP toward G-quadruplexes in comparison with single-stranded and duplex DNAs and (2) the ability of the three porphyrin derivatives to effectively stabilize G-quadruplexes, with no or little effect on the stability of duplex DNA. TMPipPrOPP can achieve colorimetric and fluorescent discrimination of G-quadruplexes from single-stranded and duplex DNAs with extraordinary high specificity. Due the presence of metal ions, Cu-TMPipPrOPP and Zn-TMPipPrOPP are deprived of the ability for optical G-quadruplex recognition but show enhanced ability to stabilize G-quadruplexes. In addition, because of the presence of the four cationic side chain substituents, the three porphyrin derivatives can form chiral aggregates via electrostatic interactions along the surface of structurally diverse DNAs. The chirality of aggregates formed by TMPipPrOPP is not changed by the nature of the template DNAs, whereas aggregates formed by Cu-TMPipPrOPP and Zn-TMPipPrOPP in the presence of adenine-thymine (AT) rich duplex DNA show completely inverted chirality in comparison with those formed in the presence of other DNAs. Interestingly, the chirality of the aggregates can be reversibly switched many times by alternating the ratio of Cu-TMPipPrOPP (or Zn-TMPipPrOPP) to AT-rich duplex DNA.


Asunto(s)
Cobre/química , ADN/química , Metaloporfirinas/química , Zinc/química , Cationes/química , G-Cuádruplex , Solubilidad , Agua/química
20.
Anal Chem ; 88(22): 10800-10804, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27797508

RESUMEN

The high susceptibility of the natural D-conformation of DNA (D-DNA) to nucleases greatly limits the application of DNA-templated silver nanoclusters (Ag NCs) in biological matrixes. Here we demonstrate that the L-conformation of DNA (L-DNA), the enantiomer of D-DNA, can also be used for the preparation of aptamer-Ag NCs. The extraordinary resistance of L-DNA to nuclease digestion confers much higher biostability to these NCs than those templated by D-DNA, thus making cell-type-specific imaging possible at physiological temperatures, using at least 100-times lower Ag NC concentration than reported D-DNA-templated ones. The L-DNA-templated metal NC probes with enhanced biostability might promote the applications of metal nanocluster probes in complex biological systems.


Asunto(s)
Aptámeros de Nucleótidos/química , ADN/química , Nanopartículas del Metal/química , Imagen Óptica/métodos , Plata/química , Temperatura , Animales , Células HeLa , Humanos , Ratones , Microscopía Fluorescente , Células 3T3 NIH
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA