Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 242(5): 1996-2010, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38571393

RESUMEN

The conquest of land by plants was concomitant with, and possibly enabled by, the evolution of three-dimensional (3D) growth. The moss Physcomitrium patens provides a model system for elucidating molecular mechanisms in the initiation of 3D growth. Here, we investigate whether the phytohormone ethylene, which is believed to have been a signal before land plant emergence, plays a role in 3D growth regulation in P. patens. We report ethylene controls 3D gametophore formation, based on results from exogenously applied ethylene and genetic manipulation of PpEIN2, which is a central component in the ethylene signaling pathway. Overexpression (OE) of PpEIN2 activates ethylene responses and leads to earlier formation of gametophores with fewer gametophores produced thereafter, phenocopying ethylene-treated wild-type. Conversely, Ppein2 knockout mutants, which are ethylene insensitive, show initially delayed gametophore formation with more gametophores produced later. Furthermore, pharmacological and biochemical analyses reveal auxin levels are decreased in the OE lines but increased in the knockout mutants. Our results suggest that evolutionarily, ethylene and auxin molecular networks were recruited to build the plant body plan in ancestral land plants. This might have played a role in enabling ancient plants to acclimate to the continental surfaces of the planet.


Asunto(s)
Bryopsida , Etilenos , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Bryopsida/crecimiento & desarrollo , Bryopsida/genética , Bryopsida/efectos de los fármacos , Bryopsida/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Células Germinativas de las Plantas/metabolismo , Células Germinativas de las Plantas/crecimiento & desarrollo , Células Germinativas de las Plantas/efectos de los fármacos , Mutación/genética
2.
Eur J Neurol ; 31(3): e16167, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38009830

RESUMEN

BACKGROUND AND PURPOSE: Several previous studies have shown that skin sebum analysis can be used to diagnose Parkinson's disease (PD). The aim of this study was to develop a portable artificial intelligence olfactory-like (AIO) system based on gas chromatographic analysis of the volatile organic compounds (VOCs) in patient sebum and explore its application value in the diagnosis of PD. METHODS: The skin VOCs from 121 PD patients and 129 healthy controls were analyzed using the AIO system and three classic machine learning models were established, including the gradient boosting decision tree (GBDT), random forest and extreme gradient boosting, to assist the diagnosis of PD and predict its severity. RESULTS: A 20-s time series of AIO system data were collected from each participant. The VOC peaks at a large number of time points roughly concentrated around 5-12 s were significantly higher in PD subjects. The gradient boosting decision tree model showed the best ability to differentiate PD from healthy controls, yielding a sensitivity of 83.33% and a specificity of 84.00%. However, the system failed to predict PD progression scored by Hoehn-Yahr stage. CONCLUSIONS: This study provides a fast, low-cost and non-invasive method to distinguish PD patients from healthy controls. Furthermore, our study also indicates abnormal sebaceous gland secretion in PD patients, providing new evidence for exploring the pathogenesis of PD.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/patología , Inteligencia Artificial , Aprendizaje Automático
3.
Proc Natl Acad Sci U S A ; 117(26): 14751-14755, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32541031

RESUMEN

The total amount of rainfall associated with tropical cyclones (TCs) over a given region is proportional to rainfall intensity and the inverse of TC translation speed. Although the contributions of increase in rainfall intensity to larger total rainfall amounts have been extensively examined, observational evidence on impacts of the recently reported but still debated long-term slowdown of TCs on local total rainfall amounts is limited. Here, we find that both observations and the multimodel ensemble of Global Climate Model simulations show a significant slowdown of TCs (11% in observations and 10% in simulations, respectively) from 1961 to 2017 over the coast of China. Our analyses of long-term observations find a significant increase in the 90th percentile of TC-induced local rainfall totals and significant inverse relationships between TC translation speeds and local rainfall totals over the study period. The study also shows that TCs with lower translation speed and higher rainfall totals occurred more frequently after 1990 in the Pearl River Delta in southern China. Our probability analysis indicates that slow-moving TCs are more likely to generate heavy rainfall of higher total amounts than fast-moving TCs. Our findings suggest that slowdown of TCs tends to elevate local rainfall totals and thus impose greater flood risks at the regional scale.

4.
Entropy (Basel) ; 25(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37998242

RESUMEN

Fault diagnosis of rotating machinery plays an important role in modern industrial machines. In this paper, a modified sparse Bayesian classification model (i.e., Standard_SBC) is utilized to construct the fault diagnosis system of rotating machinery. The features are extracted and adopted as the input of the SBC-based fault diagnosis system, and the kernel neighborhood preserving embedding (KNPE) is proposed to fuse the features. The effectiveness of the fault diagnosis system of rotating machinery based on KNPE and Standard_SBC is validated by utilizing two case studies: rolling bearing fault diagnosis and rotating shaft fault diagnosis. Experimental results show that base on the proposed KNPE, the feature fusion method shows superior performance. The accuracy of case1 and case2 is improved from 93.96% to 99.92% and 98.67% to 99.64%, respectively. To further prove the superiority of the KNPE feature fusion method, the kernel principal component analysis (KPCA) and relevance vector machine (RVM) are utilized, respectively. This study lays the foundation for the feature fusion and fault diagnosis of rotating machinery.

5.
Entropy (Basel) ; 24(4)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35455133

RESUMEN

(1) Background and objective: Cardiovascular disease is one of the most common causes of death in today's world. ECG is crucial in the early detection and prevention of cardiovascular disease. In this study, an improved deep learning method is proposed to diagnose abnormal and normal ECG accurately. (2) Methods: This paper proposes a CNN-FWS that combines three convolutional neural networks (CNN) and recursive feature elimination based on feature weights (FW-RFE), which diagnoses abnormal and normal ECG. F1 score and Recall are used to evaluate the performance. (3) Results: A total of 17,259 records were used in this study, which validated the diagnostic performance of CNN-FWS for normal and abnormal ECG signals in 12 leads. The experimental results show that the F1 score of CNN-FWS is 0.902, and the Recall of CNN-FWS is 0.889. (4) Conclusion: CNN-FWS absorbs the advantages of convolutional neural networks (CNN) to obtain three parts of different spatial information and enrich the learned features. CNN-FWS can select the most relevant features while eliminating unrelated and redundant features by FW-RFE, making the residual features more representative and effective. The method is an end-to-end modeling approach that enables an adaptive feature selection process without human intervention.

6.
Entropy (Basel) ; 24(6)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35741533

RESUMEN

(1) Background: A typical cardiac cycle consists of a P-wave, a QRS complex, and a T-wave, and these waves are perfectly shown in electrocardiogram signals (ECG). When atrial fibrillation (AF) occurs, P-waves disappear, and F-waves emerge. F-waves contain information on the cause of atrial fibrillation. Therefore it is essential to extract F-waves from the ECG signal. However, F-waves overlap the QRS complex and T-waves in both the time and frequency domain, causing this matter to be a difficult one. (2) Methods: This paper presents an optimized resonance-based signal decomposition method for detecting F-waves in single-lead ECG signals with atrial fibrillation (AF). It represents the ECG signal utilizing morphological component analysis as a linear combination of a finite number of components selected from the high-resonance and low-resonance dictionaries, respectively. The linear combination of components in the low-resonance dictionary reconstructs the oscillatory part (F-wave) of the ECG signal. In contrast, the linear combination of components in the high-resonance dictionary reconstructs the transient components part (QRST wave). The tunable Q-factor wavelet transform generates the high and low resonance dictionaries, with a high Q-factor producing a high resonance dictionary and a low Q-factor producing a low resonance dictionary. The different Q-factor settings affect the dictionaries' characteristics, hence the F-wave extraction. A genetic algorithm was used to optimize the Q-factor selection to select the optimal Q-factor. (3) Results: The presented method helps reduce RMSE between the extracted and the simulated F-waves compared to average beat subtraction (ABS) and principal component analysis (PCA). According to the amplitude of the F-wave, RMSE is reduced by 0.24-0.32. Moreover, the dominant frequency of F-waves extracted by the presented method is clearer and more resistant to interference. The presented method outperforms the other two methods, ABS and PCA, in F-wave extraction from AF-ECG signals with the ventricular premature heartbeat. (4) Conclusion: The proposed method can potentially improve the accuracy of F-wave extraction for mobile ECG monitoring equipment, especially those with fewer leads.

7.
J Exp Bot ; 71(1): 178-187, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31563952

RESUMEN

Seed germination is a developmental process regulated by numerous internal and external cues. Our previous studies have shown that calcium influx mediated by the Arabidopsis glutamate receptor homolog 3.5 (AtGLR3.5) modulates the expression of the ABSCISIC ACID INSENSITIVE 4 (ABI4) transcription factor during germination and that L-methionine (L-Met) activates AtGLR3.1/3.5 Ca2+ channels in guard cells. However, it is not known whether L-Met participates in regulation of germination and what cellular mechanism is responsible for Met production during germination. Here, we describe Arabidopsis methionine synthase 1 (AtMS1), which acts in the final step of Met biosynthesis, synthesizes the Met required for the activation of AtGLR3.5 Ca2+ channels whose expression is up-regulated during germination, leading to the regulation of seed germination. We show that exogenous L-Met promotes germination in an AtGRL3.5-dependent manner. We also demonstrate that L-Met directly regulates the AtGLR3.5-mediated increase in cytosolic Ca2+ level in seedlings. We provide pharmacological and genetic evidence that Met synthesized via AtMS1 acts upstream of the AtGLR3.5-mediated Ca2+ signal and regulates the expression of ABI4, a major regulator in the abscisic acid response in seeds. Overall, our results link AtMS1, L-Met, the AtGLR3.5 Ca2+ channel, Ca2+ signals, and ABI4, and shed light on the physiological role and molecular mechanism of L-Met in germination.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Metionina/metabolismo , Receptores de Glutamato/genética , Factores de Transcripción/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Receptores de Glutamato/metabolismo , Factores de Transcripción/metabolismo
8.
Nature ; 514(7522): 367-71, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25162526

RESUMEN

Water is crucial to plant growth and development. Environmental water deficiency triggers an osmotic stress signalling cascade, which induces short-term cellular responses to reduce water loss and long-term responses to remodel the transcriptional network and physiological and developmental processes. Several signalling components that have been identified by extensive genetic screens for altered sensitivities to osmotic stress seem to function downstream of the perception of osmotic stress. It is known that hyperosmolality and various other stimuli trigger increases in cytosolic free calcium concentration ([Ca(2+)]i). Considering that in bacteria and animals osmosensing Ca(2+) channels serve as osmosensors, hyperosmolality-induced [Ca(2+)]i increases have been widely speculated to be involved in osmosensing in plants. However, the molecular nature of corresponding Ca(2+) channels remain unclear. Here we describe a hyperosmolality-gated calcium-permeable channel and its function in osmosensing in plants. Using calcium-imaging-based unbiased forward genetic screens we isolated Arabidopsis mutants that exhibit low hyperosmolality-induced [Ca(2+)]i increases. These mutants were rescreened for their cellular, physiological and developmental responses to osmotic stress, and those with clear combined phenotypes were selected for further physical mapping. One of the mutants, reduced hyperosmolality-induced [Ca(2+)]i increase 1 (osca1), displays impaired osmotic Ca(2+) signalling in guard cells and root cells, and attenuated water transpiration regulation and root growth in response to osmotic stress. OSCA1 is identified as a previously unknown plasma membrane protein and forms hyperosmolality-gated calcium-permeable channels, revealing that OSCA1 may be an osmosensor. OSCA1 represents a channel responsible for [Ca(2+)]i increases induced by a stimulus in plants, opening up new avenues for studying Ca(2+) machineries for other stimuli and providing potential molecular genetic targets for engineering drought-resistant crops.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio , Calcio/metabolismo , Presión Osmótica , Agua/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Canales de Calcio/genética , Membrana Celular/metabolismo , Citoplasma/metabolismo , Sequías , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transpiración de Plantas
9.
Proc Natl Acad Sci U S A ; 113(27): 7661-6, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27325772

RESUMEN

The phenomenon of delayed flowering after the application of nitrogen (N) fertilizer has long been known in agriculture, but the detailed molecular basis for this phenomenon is largely unclear. Here we used a modified method of suppression-subtractive hybridization to identify two key factors involved in N-regulated flowering time control in Arabidopsis thaliana, namely ferredoxin-NADP(+)-oxidoreductase and the blue-light receptor cryptochrome 1 (CRY1). The expression of both genes is induced by low N levels, and their loss-of-function mutants are insensitive to altered N concentration. Low-N conditions increase both NADPH/NADP(+) and ATP/AMP ratios, which in turn affect adenosine monophosphate-activated protein kinase (AMPK) activity. Moreover, our results show that the AMPK activity and nuclear localization are rhythmic and inversely correlated with nuclear CRY1 protein abundance. Low-N conditions increase but high-N conditions decrease the expression of several key components of the central oscillator (e.g., CCA1, LHY, and TOC1) and the flowering output genes (e.g., GI and CO). Taken together, our results suggest that N signaling functions as a modulator of nuclear CRY1 protein abundance, as well as the input signal for the central circadian clock to interfere with the normal flowering process.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Criptocromos/fisiología , Ferredoxina-NADP Reductasa/metabolismo , Flores/fisiología , Nitrógeno/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Relojes Circadianos , Mutación , NADP/metabolismo , Técnicas de Hibridación Sustractiva
10.
Plant Physiol ; 174(2): 1274-1284, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28450424

RESUMEN

Folates, termed from tetrahydrofolate (THF) and its derivatives, function as coenzymes in one-carbon transfer reactions and play a central role in synthesis of nucleotides and amino acids. Dysfunction of cellular folate metabolism leads to serious defects in plant development; however, the molecular mechanisms of folate-mediated cellular modifications and physiological responses in plants are still largely unclear. Here, we reported that THF controls flowering time by adjusting DNA methylation-regulated gene expression in Arabidopsis (Arabidopsis thaliana). Wild-type seedlings supplied with THF as well as the high endogenous THF content mutant dihydrofolate synthetase folypoly-Glu synthetase homolog B exhibited significant up-regulation of the flowering repressor of Flowering Wageningen and thereby delaying floral transition in a dose-dependent manner. Genome-wide transcripts and DNA methylation profiling revealed that THF reduces DNA methylation so as to manipulate gene expression activity. Moreover, in accompaniment with elevated cellular ratios between monoglutamylated and polyglutamylated folates under increased THF levels, the content of S-adenosylhomo-Cys, a competitive inhibitor of methyltransferases, was obviously higher, indicating that enhanced THF accumulation may disturb cellular homeostasis of the concerted reactions between folate polyglutamylation and folate-dependent DNA methylation. In addition, we found that the loss-of-function mutant of CG DNA methyltransferase MET1 displayed much less responsiveness to THF-associated flowering time alteration. Taken together, our studies revealed a novel regulatory role of THF on epigenetic silencing, which will shed lights on the understanding of interrelations in folate homeostasis, epigenetic variation, and flowering control in plants.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Epigénesis Genética/efectos de los fármacos , Flores/genética , Silenciador del Gen/efectos de los fármacos , Tetrahidrofolatos/farmacología , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Flores/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genoma de Planta , Ácido Poliglutámico/metabolismo
11.
Plant Cell Environ ; 40(9): 1834-1848, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28556250

RESUMEN

Nitric oxide (NO) is extensively involved in various growth processes and stress responses in plants; however, the regulatory mechanism of NO-modulated cellular sugar metabolism is still largely unknown. Here, we report that NO significantly inhibited monosaccharide catabolism by modulating sugar metabolic enzymes through S-nitrosylation (mainly by oxidizing dihydrolipoamide, a cofactor of pyruvate dehydrogenase). These S-nitrosylation modifications led to a decrease in cellular glycolysis enzymes and ATP synthase activities as well as declines in the content of acetyl coenzyme A, ATP, ADP-glucose and UDP-glucose, which eventually caused polysaccharide-biosynthesis inhibition and monosaccharide accumulation. Plant developmental defects that were caused by high levels of NO included delayed flowering time, retarded root growth and reduced starch granule formation. These phenotypic defects could be mediated by sucrose supplementation, suggesting an essential role of NO-sugar cross-talks in plant growth and development. Our findings suggest that molecular manipulations could be used to improve fruit and vegetable sweetness.


Asunto(s)
Arabidopsis/metabolismo , Monosacáridos/metabolismo , Óxido Nítrico/farmacología , Complejos de ATP Sintetasa/metabolismo , Adenosina Difosfato Glucosa/metabolismo , Adenosina Trifosfato/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Glucólisis/efectos de los fármacos , Mutación/genética , Nitrosación , Oxidación-Reducción , Fenotipo , Desarrollo de la Planta/efectos de los fármacos , Raíces de Plantas/anatomía & histología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Solubilidad , Almidón/metabolismo , Sacarosa/farmacología , Ácido Tióctico/análogos & derivados , Ácido Tióctico/metabolismo , Uridina Difosfato Glucosa/metabolismo
12.
Proc Natl Acad Sci U S A ; 111(45): 16196-201, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25355908

RESUMEN

Nitric oxide (NO), an active signaling molecule in plants, is involved in numerous physiological processes and adaptive responses to environmental stresses. Under high-salt conditions, plants accumulate NO quickly, and reorganize Na(+) and K(+) contents. However, the molecular connection between NO and ion homeostasis is largely unknown. Here, we report that NO lowers K(+) channel AKT1-mediated plant K(+) uptake by modulating vitamin B6 biosynthesis. In a screen for Arabidopsis NO-hypersensitive mutants, we isolated sno1 (sensitive to nitric oxide 1), which is allelic to the previously noted mutant sos4 (salt overly sensitive 4) that has impaired Na(+) and K(+) contents and overproduces pyridoxal 5'-phosphate (PLP), an active form of vitamin B6. We showed that NO increased PLP and decreased K(+) levels in plant. NO induced SNO1 gene expression and enzyme activity, indicating that NO-triggered PLP accumulation mainly occurs through SNO1-mediated vitamin B6 salvage biosynthetic pathway. Furthermore, we demonstrated that PLP significantly repressed the activity of K(+) channel AKT1 in the Xenopus oocyte system and Arabidopsis root protoplasts. Together, our results suggest that NO decreases K(+) absorption by promoting the synthesis of vitamin B6 PLP, which further represses the activity of K(+) channel AKT1 in Arabidopsis. These findings reveal a previously unidentified pivotal role of NO in modulating the homeostasis of vitamin B6 and potassium nutrition in plants, and shed light on the mechanism of NO in plant acclimation to environmental changes.


Asunto(s)
Arabidopsis/metabolismo , Homeostasis/fisiología , Raíces de Plantas/metabolismo , Potasio/metabolismo , Vitamina B 6/biosíntesis , Animales , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis , Transporte Iónico/fisiología , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Oocitos , Raíces de Plantas/citología , Canales de Potasio , Protoplastos/citología , Protoplastos/metabolismo , Fosfato de Piridoxal/genética , Fosfato de Piridoxal/metabolismo , Vitamina B 6/genética , Xenopus laevis
13.
Plant Physiol ; 167(4): 1630-42, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25681329

RESUMEN

Seed germination is a critical step in a plant's life cycle that allows successful propagation and is therefore strictly controlled by endogenous and environmental signals. However, the molecular mechanisms underlying germination control remain elusive. Here, we report that the Arabidopsis (Arabidopsis thaliana) glutamate receptor homolog3.5 (AtGLR3.5) is predominantly expressed in germinating seeds and increases cytosolic Ca2+ concentration that counteracts the effect of abscisic acid (ABA) to promote germination. Repression of AtGLR3.5 impairs cytosolic Ca2+ concentration elevation, significantly delays germination, and enhances ABA sensitivity in seeds, whereas overexpression of AtGLR3.5 results in earlier germination and reduced seed sensitivity to ABA. Furthermore, we show that Ca2+ suppresses the expression of ABSCISIC ACID INSENSITIVE4 (ABI4), a key transcription factor involved in ABA response in seeds, and that ABI4 plays a fundamental role in modulation of Ca2+-dependent germination. Taken together, our results provide molecular genetic evidence that AtGLR3.5-mediated Ca2+ influx stimulates seed germination by antagonizing the inhibitory effects of ABA through suppression of ABI4. These findings establish, to our knowledge, a new and pivotal role of the plant glutamate receptor homolog and Ca2+ signaling in germination control and uncover the orchestrated modulation of the AtGLR3.5-mediated Ca2+ signal and ABA signaling via ABI4 to fine-tune the crucial developmental process, germination, in Arabidopsis.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Calcio/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Receptores de Glutamato/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Citosol/metabolismo , Genes Reporteros , Germinación , Modelos Biológicos , Mutación , Receptores de Glutamato/genética , Semillas/genética , Semillas/fisiología , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Proc Natl Acad Sci U S A ; 110(4): 1548-53, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23319631

RESUMEN

Maintaining nitric oxide (NO) homeostasis is essential for normal plant physiological processes. However, very little is known about the mechanisms of NO modulation in plants. Here, we report a unique mechanism for the catabolism of NO based on the reaction with the plant hormone cytokinin. We screened for NO-insensitive mutants in Arabidopsis and isolated two allelic lines, cnu1-1 and 1-2 (continuous NO-unstressed 1), that were identified as the previously reported altered meristem program 1 (amp1) and as having elevated levels of cytokinins. A double mutant of cnu1-2 and nitric oxide overexpression 1 (nox1) reduced the severity of the phenotypes ascribed to excess NO levels as did treating the nox1 line with trans-zeatin, the predominant form of cytokinin in Arabidopsis. We further showed that peroxinitrite, an active NO derivative, can react with zeatin in vitro, which together with the results in vivo suggests that cytokinins suppress the action of NO most likely through direct interaction between them, leading to the reduction of endogenous NO levels. These results provide insights into NO signaling and regulation of its bioactivity in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Óxido Nítrico/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Carboxipeptidasas/genética , Carboxipeptidasas/metabolismo , Citocininas/química , Citocininas/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Genes de Plantas , Mutación , Donantes de Óxido Nítrico/farmacología , Nitroprusiato/farmacología , Ácido Peroxinitroso/metabolismo , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Zeatina/metabolismo , Zeatina/farmacología
15.
Ecotoxicol Environ Saf ; 133: 475-80, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27526021

RESUMEN

In this study, a recombinant thyroid receptor (TR) gene yeast assay combined with Monte Carlo simulation were used to evaluate and characterize soil samples collected from Jilin (China) along the Second Songhua River, for their ant/agonist effect on TR. No TR agonistic activity was found in soils, but many soil samples exhibited TR antagonistic activities, and the bioassay-derived amiodarone hydrochloride equivalents, which was calculated based on Monte Carlo simulation, ranged from not detected (N.D.) to 35.5µg/g. Hydrophilic substance fractions were determined to be the contributors to TR antagonistic activity in these soil samples. Our results indicate that the novel calculation method is effective for the quantification and characterization of TR antagonists in soil samples, and these data could provide useful information for future management and remediation efforts for contaminated soils.


Asunto(s)
Antitiroideos/análisis , Disruptores Endocrinos/farmacología , Receptores de Hormona Tiroidea/metabolismo , Ríos , Contaminantes del Suelo/farmacología , Suelo/química , Glándula Tiroides , Bioensayo/métodos , China , Disruptores Endocrinos/análisis , Monitoreo del Ambiente/métodos , Método de Montecarlo , Receptores de Hormona Tiroidea/genética , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , Levaduras
16.
PLoS Pathog ; 9(6): e1003370, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23754942

RESUMEN

The circadian clock integrates temporal information with environmental cues in regulating plant development and physiology. Recently, the circadian clock has been shown to affect plant responses to biotic cues. To further examine this role of the circadian clock, we tested disease resistance in mutants disrupted in CCA1 and LHY, which act synergistically to regulate clock activity. We found that cca1 and lhy mutants also synergistically affect basal and resistance gene-mediated defense against Pseudomonas syringae and Hyaloperonospora arabidopsidis. Disrupting the circadian clock caused by overexpression of CCA1 or LHY also resulted in severe susceptibility to P. syringae. We identified a downstream target of CCA1 and LHY, GRP7, a key constituent of a slave oscillator regulated by the circadian clock and previously shown to influence plant defense and stomatal activity. We show that the defense role of CCA1 and LHY against P. syringae is at least partially through circadian control of stomatal aperture but is independent of defense mediated by salicylic acid. Furthermore, we found defense activation by P. syringae infection and treatment with the elicitor flg22 can feedback-regulate clock activity. Together this data strongly supports a direct role of the circadian clock in defense control and reveal for the first time crosstalk between the circadian clock and plant innate immunity.


Asunto(s)
Proteínas de Arabidopsis/inmunología , Arabidopsis/inmunología , Relojes Circadianos/inmunología , Proteínas de Unión al ADN/inmunología , Resistencia a la Enfermedad/inmunología , Pseudomonas putida/inmunología , Factores de Transcripción/inmunología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relojes Circadianos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Resistencia a la Enfermedad/genética , Mutación , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Environ Monit Assess ; 187(11): 724, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26519078

RESUMEN

In the present study, re-combined estrogen receptor (ER) and androgen receptor (AR) gene yeast assays combined with a novel approach based on Monte Carlo simulation were used for evaluation and characterization of soil samples collected from Jilin along the Second Songhua River to assess their antagonist/agonist properties for ER and AR. The results showed that estrogenic activity only occurred in the soil samples collected in the agriculture area, but most soil samples showed anti-estrogenic activities, and the bioassay-derived 4-hydroxytamoxifen equivalents ranged from N.D. to 23.51 µg/g. Hydrophilic substance fractions were determined as potential contributors associated with anti-estrogenic activity in these soil samples. Moreover, none of the soil samples exhibited AR agonistic potency, whereas 54% of the soil samples exhibited AR antagonistic potency. The flutamide equivalents varied between N.D. and 178.05 µg/g. Based on Monte Carlo simulation-related mass balance analysis, the AR antagonistic activities were significantly correlated with the media polar and polar fractions. All of these results support that this novel calculation method can be adopted effectively to quantify and characterize the ER/AR agonists and antagonists of the soil samples, and these data could help provide useful information for future management and remediation efforts.


Asunto(s)
Antagonistas de Andrógenos/análisis , Monitoreo del Ambiente , Estrógenos/análisis , Contaminantes del Suelo/análisis , Suelo/química , Bioensayo , China , Estrona/análisis , Receptores Androgénicos , Ríos , Tamoxifeno/análogos & derivados , Contaminantes Químicos del Agua/análisis
18.
J Exp Bot ; 65(14): 4051-63, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24336389

RESUMEN

After germination, cotyledons undertake the major role in supplying nutrients to the pre-photoautorophy angiosperm seedlings until they senesce. Like other senescence processes, cotyledon senescence is a programmed degenerative process. Nitric oxide can induce premature cotyledon senescence in Arabidopsis thaliana, yet the underlying mechanism remains elusive. A screen for genetic mutants identified the nes1 mutant, in which cotyledon senescence was accelerated by nitric oxide. Map-based cloning revealed that NES1 is allelic to a previously reported mitotic checkpoint family gene, MAD1. The nes1/mad1 mutants were restored to the wild type, in response to nitric oxide, by transforming them with pNES1::NES1. Ectopic expression of NES1 in the wild type delayed nitric oxide-mediated cotyledon senescence, confirming the repressive role of NES1. Moreover, two positive regulators of leaf senescence, the ethylene signalling component EIN2 and the transcription factor ORE1/AtNAC2/ANAC092, were found to function during nitric oxide-induced senescence in cotyledons. The block of ORE1 function delayed senescence and ectopic expression induced the process, revealing the positive role of ORE1. EIN2 was required to induce ORE1. Furthermore, the genetic interaction analysis between NES1 and ORE1 showed that the ore1 loss-of-function mutants were epistatic to nes1, suggesting the dominant role of ORE1 and the antagonistic role of NES1 during nitric oxide-induced cotyledon senescence in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Cotiledón/crecimiento & desarrollo , Óxido Nítrico/farmacología , Receptores de Superficie Celular/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Clonación Molecular , Cotiledón/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mutación/genética , Fenotipo , Plantas Modificadas Genéticamente , Transducción de Señal
19.
Science ; 382(6670): 579-584, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37917705

RESUMEN

Global land water underpins livelihoods, socioeconomic development, and ecosystems. It remains unclear how water availability has changed in recent decades. Using an ensemble of observations, we quantified global land water availability over the past two decades. We show that the Southern Hemisphere has dominated the declining trend in global water availability from 2001 to 2020. The significant decrease occurs mainly in South America, southwestern Africa, and northwestern Australia. In the Northern Hemisphere, the complex regional increasing and decreasing trends cancel each other, resulting in a negligible hemispheric trend. The variability and trend in water availability in the Southern Hemisphere are largely driven by precipitation associated with climate modes, particularly the El Niño-Southern Oscillation. This study highlights their dominant role in controlling global water availability.

20.
Sci Total Environ ; 836: 155715, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35525365

RESUMEN

Based on in vitro and in silico assays as well as proteome analysis, this study explored the nongenomic mechanism for butyl benzyl phthalate (BBP)-induced thyroid disruption. Molecular docking simulations showed that BBP could dock into the Arg-Gly-Asp (RGD) domain of integrin αvß3 and form hydrogen bonds with a docking energy of -35.80 kcal/mol. This chemical enhanced rat pituitary tumor cell (GH3) proliferation and exhibited thyroid hormone-disrupting effects at 5-10 µmol/L. Meanwhile, BBP upregulated ß3 gene expression and activated the downstream mitogen-activated protein kinase (MAPK) pathway in GH3 cells. Interestingly, GH3 cell proliferation was attenuated by integrin αvß3 inhibitor (RGD peptide) or ERK1/2 inhibitor (PD98059), suggesting that the disruptions might be partly attributed to its interaction with integrin αvß3 and activation of MAPK. Furthermore, quantitative proteomic analysis of zebrafish embryos exposed to BBP at an environmentally relevant concentration of 0.3 µmol/L revealed that BBP perturbed proteins and pathways related to cell communication (e.g., integrin binding) and signal transduction (e.g., MAPK signaling pathway). Taken together, our results supported that the biological effects of BBP-activated integrin αvß3 mediated by the nongenomic pathway play an important role in its thyroid disruption. CAPSULE: The nongenomic pathway plays a vital role in the thyroid disruption-inducing actions of BBP.


Asunto(s)
Ácidos Ftálicos , Glándula Tiroides , Animales , Integrina alfaVbeta3/genética , Integrina alfaVbeta3/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/toxicidad , Proteoma/metabolismo , Proteómica , Ratas , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA