RESUMEN
As a result of long-term bidirectional selection for aggressiveness towards human, tame and aggres- sive outbred gray rat lines were established. The objective of the current work was to compare play fighting during adolescence in tame, aggressive and unselected rats. It was shown that the selection for the absence of aggression towards human is associated with longer maintenance of some juvenile play features compared to unselected rats. Although, the time of play fighting during different stages of adolescence didn't differ in tame and unselected rats. The selection for enhancement of aggressiveness towards human didn't change the play behavior structure, but caused an increase of play behavior during middle stage of adolescence. It seems that the attenuation of aggression and longer maintenance of some juvenile play features in tame rats is part of fundamental behavioral reorganization during domestication, which is connected with neoteny.
Asunto(s)
Agresión/fisiología , Conducta Animal/fisiología , Conducta Competitiva/fisiología , Domesticación , Animales , Animales no Consanguíneos , Cruzamiento/métodos , Femenino , Masculino , Ratas , Factores de TiempoRESUMEN
The aim of this work is analysis of the open-field behavior in grey rats selected for the tame and aggressive behavior in comparison with the wild grey rats. Significant influences of the rat group factor on the 13 of 19 behavioral features studied in the open-field were found. This effect, in general, depends on existence of great differences between behaviors of the wild rats from the one hand and behaviors of the tame and aggressive rats from the other. The behaviors of the rats from the last two groups are practically identical. Multidimensional analysis confirms the distinct separation in coordinates of the two main components of the wild rat behavior from the behavior of both the tame and selectively bred aggressive rats. The first main component dimension corresponds to the grade of fear, which was significantly enhanced in the wild rats. So, in spite of the equality of behavioral aggressiveness of the wild rats and the rats selected for aggression with the glove test, the behavior of selected aggressive rats in the open-field is analogous to behavior of the rats selected for tameness. Comparison of behavioral features with the hormonal stress responsiveness allowed us to conclude that the aggressive behavior of the wild and se lected for aggression rats based on different motivational and neuroendocrine processes.
Asunto(s)
Agresión/fisiología , Conducta Animal/fisiología , Sistemas Neurosecretores/fisiología , Animales , Miedo/fisiología , Masculino , Ratas , Selección GenéticaRESUMEN
Introduction: Cell-free DNA (cfDNA) circulates in the blood for a long time. The levels of cfDNA in the blood are assayed in cancer diagnostics because they are closely related to the tumor burden of patients.Areas covered: cfDNA escapes the action of DNA-hydrolyzing enzymes, being a part of supramolecular complexes or interacting with the plasma membrane of blood cells. cfDNA has heterogeneous size and composition, which impose various restrictions on both isolation methods and subsequent analysis. cfDNA concentration and structural changes with the development of diseases highlight the high potential of cfDNA as a diagnostic and prognostic marker. The concentration of cfDNA released in the blood by tumor cells determines the specificity of such diagnostics and the required blood volume. The present review aimed to synthesize the available data on cfDNA concentration in the cancer patient's blood as well as pre-analytical, analytical, and biological factors, which interfere with cfDNA concentration.Expert opinion: The concentration of cfDNA and tumor cell DNA (ctDNA), and the over-presentation of DNA loci in cfDNA must be considered when looking for tumor markers. Some inconsistent data on cfDNA concentrations (like those obtained by different methods) suggest that the study of cfDNA should be continued.
Asunto(s)
Ácidos Nucleicos Libres de Células/sangre , ADN/sangre , Neoplasias/sangre , Neoplasias/genética , Ácidos Nucleicos Libres de Células/genética , ADN/genética , Humanos , Neoplasias/clasificación , Neoplasias/diagnósticoRESUMEN
There are indications that exposing adolescent rodents to oxytocin (OT) promotes social activity and reduces anxiety in adulthood. Adult male gray rats selected for elimination and enhancement of the aggressive response to humans, when exposed to OT, showed divergent changes in the resident behavior towards the intruder. It could be assumed that adolescent administration of both OT and antagonist of OT receptor (OTR) would also have different long-term effects on resident behavior and startle reflex in adult aggressive and tame rats. The aim of this work is to study the long-term effects of adolescent administration of both OT and antagonist of OT receptor (OTR) on resident behavior and startle reflex in adult tame and aggressive male gray rats. Starting at the age of 28 days, the animals received nasal applications of 5 µL of oxytocin solution (1 µg / µL) or saline for 5 days (daily). At the age of two months, the acoustic startle amplitude was assessed in two series of 5 acoustic stimuli. The resident-intruder test was performed one week later. Antagonist of OT receptor l-368,899 was administered intraperitoneally (i.p.) once at a dose of 5 mg/kg at the age of 30-33 days. Subsequent startle reflex tests were performed 20 days later, at the age of 50-53 days. A week later, the resident-intruder test was performed on the same rats. The startle amplitude in aggressive rats of the control group (in two series of acoustic stimuli) and those having received saline (in the first series) was larger than in the corresponding tame groups. Oxytocin and saline solutions did not significantly affect the startle amplitude compared to control animals. After saline administration, the attack latency in tame rats was longer than in aggressive rats (P <0.05). Oxytocin treatment caused a prolongation of this period in aggressive males compared with control animals receiving saline solution (P <0.01). In addition, oxytocin administration in aggressive males caused an increase in the time of social behavior, which did not include aggressive and same-sex behavior, as compared with the corresponding control animals (P <0.05). Exogenous oxytocin receptor antagonist (l-368,899) did not affect the startle amplitude and behavior in the resident-intruder test in aggressive and tame male rats. Adolescent OT treatment causes a prolongation of both the attack latency and social behavior in the resident-intruder test in adult aggressive male rats, but does not affect these parameters in tame rats.
Asunto(s)
Agresión , Oxitocina , Animales , Masculino , Ratas , Receptores de Oxitocina , Reflejo de Sobresalto , Conducta SocialRESUMEN
Urine of prostate cancer (PCa) carries miRNAs originated from prostate cancer cells as a part of both nucleoprotein complexes and cell-secreted extracellular vesicles. The analysis of such miRNA-markers in urine can be a convenient option for PCa screening. The aims of this study were to reveal miRNA-markers of PCa in urine and design a robust and precise diagnostic test, based on miRNA expression analysis. The expression analysis of the 84 miRNAs in paired urine extracellular vesicles (EVs) and cell free urine supernatant samples from healthy donors, patients with benign and malignant prostate tumours was done using miRCURY LNA miRNA qPCR Panels (Exiqon, Denmark). Sets of miRNAs differentially expressed between the donor groups were found in urine EVs and urine supernatant. Diagnostically significant miRNAs were selected and algorithm of data analysis, based on expression data on 24-miRNA in urine and obtained using 17 analytical systems, was designed. The developed algorithm of data analysis describes a series of steps necessary to define cut-off values and sequentially analyze miRNA expression data according to the cut-offs to facilitate classification of subjects in case/control groups and allows to detect PCa patients with 97.5% accuracy.
Asunto(s)
MicroARNs/genética , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Anciano , Anciano de 80 o más Años , Algoritmos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/orina , Estudios de Casos y Controles , Interpretación Estadística de Datos , Vesículas Extracelulares/genética , Redes Reguladoras de Genes , Humanos , Masculino , MicroARNs/orina , Persona de Mediana Edad , Hiperplasia Prostática/diagnóstico , Hiperplasia Prostática/genética , Hiperplasia Prostática/orina , Neoplasias de la Próstata/orinaRESUMEN
The influence of social disturbance in early life on behavior, response of blood corticosterone level to restraint stress, and endocrine and morphometric indices of the testes was studied in 2-month Norway rat males from three populations: not selected for behavior (unselected), selected for against aggression to humans (tame), and selected for increased aggression to humans (aggressive). The experimental social disturbance included early weaning, daily replacement of cagemates from days 19 to 25, and subsequent housing in twos till the age of 2months. The social disturbance increased the latent period of aggressive behavior in the social interaction test in unselected males and reduced relative testis weights in comparison to the corresponding control groups. In addition, experimental unselected rats had smaller diameters of seminiferous tubules and lower blood testosterone levels. In the experimental group, tame rats had lower basal corticosterone levels, and aggressive animals had lower hormone levels after restraint stress in comparison to the control. The results suggest that the selection in two directions for attitude to humans modifies the response of male rats to social disturbance in early life. In this regard, the selected rat populations may be viewed as a model for investigation of (1) neuroendocrinal mechanisms responsible for the manifestation of aggression and (2) interaction of the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal systems in stress.