Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 622(7981): 130-138, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37730990

RESUMEN

Deep brain stimulation (DBS) of the subcallosal cingulate (SCC) can provide long-term symptom relief for treatment-resistant depression (TRD)1. However, achieving stable recovery is unpredictable2, typically requiring trial-and-error stimulation adjustments due to individual recovery trajectories and subjective symptom reporting3. We currently lack objective brain-based biomarkers to guide clinical decisions by distinguishing natural transient mood fluctuations from situations requiring intervention. To address this gap, we used a new device enabling electrophysiology recording to deliver SCC DBS to ten TRD participants (ClinicalTrials.gov identifier NCT01984710). At the study endpoint of 24 weeks, 90% of participants demonstrated robust clinical response, and 70% achieved remission. Using SCC local field potentials available from six participants, we deployed an explainable artificial intelligence approach to identify SCC local field potential changes indicating the patient's current clinical state. This biomarker is distinct from transient stimulation effects, sensitive to therapeutic adjustments and accurate at capturing individual recovery states. Variable recovery trajectories are predicted by the degree of preoperative damage to the structural integrity and functional connectivity within the targeted white matter treatment network, and are matched by objective facial expression changes detected using data-driven video analysis. Our results demonstrate the utility of objective biomarkers in the management of personalized SCC DBS and provide new insight into the relationship between multifaceted (functional, anatomical and behavioural) features of TRD pathology, motivating further research into causes of variability in depression treatment.


Asunto(s)
Estimulación Encefálica Profunda , Depresión , Trastorno Depresivo Mayor , Humanos , Inteligencia Artificial , Biomarcadores , Estimulación Encefálica Profunda/métodos , Depresión/fisiopatología , Depresión/terapia , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/terapia , Electrofisiología , Resultado del Tratamiento , Medición de Potencial de Campo Local , Sustancia Blanca , Lóbulo Límbico/fisiología , Lóbulo Límbico/fisiopatología , Expresión Facial
2.
Mol Psychiatry ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919403

RESUMEN

Ongoing experimental studies of subcallosal cingulate deep brain stimulation (SCC DBS) for treatment-resistant depression (TRD) show a differential timeline of behavioral effects with rapid changes after initial stimulation, and both early and delayed changes over the course of ongoing chronic stimulation. This study examined the longitudinal resting-state regional cerebral blood flow (rCBF) changes in intrinsic connectivity networks (ICNs) with SCC DBS for TRD over 6 months and repeated the same analysis by glucose metabolite changes in a new cohort. A total of twenty-two patients with TRD, 17 [15 O]-water and 5 [18 F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) patients, received SCC DBS and were followed weekly for 7 months. PET scans were collected at 4-time points: baseline, 1-month after surgery, and 1 and 6 months of chronic stimulation. A linear mixed model was conducted to examine the differential trajectory of rCBF changes over time. Post-hoc tests were also examined to assess postoperative, early, and late ICN changes and response-specific effects. SCC DBS had significant time-specific effects in the salience network (SN) and the default mode network (DMN). The rCBF in SN and DMN was decreased after surgery, but responder and non-responders diverged thereafter, with a net increase in DMN activity in responders with chronic stimulation. Additionally, the rCBF in the DMN uniquely correlated with depression severity. The glucose metabolic changes in a second cohort show the same DMN changes. The trajectory of PET changes with SCC DBS is not linear, consistent with the chronology of therapeutic effects. These data provide novel evidence of both an acute reset and ongoing plastic effects in the DMN that may provide future biomarkers to track clinical improvement with ongoing treatment.

3.
Stereotact Funct Neurosurg ; 100(2): 95-98, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34649247

RESUMEN

We present a patient with severe life-threatening dyskinesias due to a persistent microlesion effect after STN-DBS electrode implantation. The pallidofugal pathways were identified using patient-specific tractography, and steering the current toward this white matter structure resulted in complete resolution of the severe dyskinesias.


Asunto(s)
Estimulación Encefálica Profunda , Discinesias , Enfermedad de Parkinson , Núcleo Subtalámico , Estimulación Encefálica Profunda/efectos adversos , Estimulación Encefálica Profunda/métodos , Discinesias/etiología , Discinesias/terapia , Humanos , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/cirugía
4.
Neuromodulation ; 24(8): 1327-1335, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31225695

RESUMEN

OBJECTIVE: A recently introduced Spinal Cord Stimulation (SCS) system operates at 10 kHz, faster than conventional SCS systems, resulting in significantly more power delivered to tissues. Using a SCS heat phantom and bioheat multi-physics model, we characterized tissue temperature increases by this 10 kHz system. We also evaluated its Implanted Pulse Generator (IPG) output compliance and the role of impedance in temperature increases. MATERIALS AND METHODS: The 10 kHz SCS system output was characterized under resistive loads (1-10 KΩ). Separately, fiber optic temperature probes quantified temperature increases (ΔTs) around the SCS lead in specially developed heat phantoms. The role of stimulation Level (1-7; ideal pulse peak-to-peak of 1-7mA) was considered, specifically in the context of stimulation current Root Mean Square (RMS). Data from the heat phantom were verified with the SCS heat-transfer models. A custom high-bandwidth stimulator provided 10 kHz pulses and sinusoidal stimulation for control experiments. RESULTS: The 10 kHz SCS system delivers 10 kHz biphasic pulses (30-20-30 µs). Voltage compliance was 15.6V. Even below voltage compliance, IPG bandwidth attenuated pulse waveform, limiting applied RMS. Temperature increased supralinearly with stimulation Level in a manner predicted by applied RMS. ΔT increases with Level and impedance until stimulator compliance was reached. Therefore, IPG bandwidth and compliance dampen peak heating. Nonetheless, temperature increases predicted by bioheat multi-physic models (ΔT = 0.64°C and 1.42°C respectively at Level 4 and 7 at the cervical segment; ΔT = 0.68°C and 1.72°C respectively at Level 4 and 7 at the thoracic spinal cord)-within ranges previously reported to effect neurophysiology. CONCLUSIONS: Heating of spinal tissues by this 10 kHz SCS system theoretically increases quickly with stimulation level and load impedance, while dampened by IPG pulse bandwidth and voltage compliance limitations. If validated in vivo as a mechanism of kHz SCS, bioheat models informed by IPG limitations allow prediction and optimization of temperature changes.


Asunto(s)
Estimulación de la Médula Espinal , Calor , Humanos , Fantasmas de Imagen , Médula Espinal , Temperatura
5.
Value Health ; 23(5): 656-665, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32389232

RESUMEN

OBJECTIVES: Spinal cord stimulation (SCS) is a recognized treatment for chronic pain. This systematic review aims to assess economic evaluations of SCS for the management of all chronic pain conditions, summarize key findings, and assess the quality of studies to inform healthcare resource allocation decisions and future research. METHODS: Economic evaluations were identified by searching general medical and economic databases complemented with screening of reference lists of identified studies. No restrictions on language or treatment comparators were applied. Relevant data were extracted. The quality of included studies was assessed using the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) checklist. RESULTS: Fourteen studies met the inclusion criteria and were judged to be of acceptable quality. Economic evaluations assessed SCS for the management of refractory angina pectoris, failed back surgery syndrome (FBSS), complex regional pain syndrome (CRPS), diabetic peripheral neuropathy (DPN), and peripheral arterial disease. Model-based studies typically applied a 2-stage model, i.e. decision tree followed by Markov model. Time horizon varied from 1 year to lifetime. Cost-effectiveness ranged widely from dominant (SCS cost-saving and more effective) to incremental cost-effectiveness ratio of >£100,000 per quality-adjusted life-year. Cost-effectiveness appeared to depend on the time horizon, choice of comparator, and indication. Ten of the studies indicated SCS as cost-saving or cost-effective compared with the alternative strategies. CONCLUSION: The results consistently suggest that SCS is cost-effective when considering a long-term time horizon, particularly for the management of FBSS and CRPS. Further studies are needed to assess the cost-effectiveness of SCS for ischemic pain and DPN.


Asunto(s)
Dolor Crónico/terapia , Análisis Costo-Beneficio , Estimulación de la Médula Espinal/economía , Síndromes de Dolor Regional Complejo/terapia , Síndrome de Fracaso de la Cirugía Espinal Lumbar/terapia , Humanos , Enfermedad Arterial Periférica/terapia
6.
J Neurol Neurosurg Psychiatry ; 89(8): 886-896, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29371415

RESUMEN

OBJECTIVE: Refractory psychiatric disease is a major cause of morbidity and mortality worldwide, and there is a great need for new treatments. In the last decade, investigators piloted novel deep brain stimulation (DBS)-based therapies for depression and obsessive-compulsive disorder (OCD). Results from recent pivotal trials of these therapies, however, did not demonstrate the degree of efficacy expected from previous smaller trials. To discuss next steps, neurosurgeons, neurologists, psychiatrists and representatives from industry convened a workshop sponsored by the American Society for Stereotactic and Functional Neurosurgery in Chicago, Illinois, in June of 2016. DESIGN: Here we summarise the proceedings of the workshop. Participants discussed a number of issues of importance to the community. First, we discussed how to interpret results from the recent pivotal trials of DBS for OCD and depression. We then reviewed what can be learnt from lesions and closed-loop neurostimulation. Subsequently, representatives from the National Institutes of Health, the Food and Drug Administration and industry discussed their views on neuromodulation for psychiatric disorders. In particular, these third parties discussed their criteria for moving forward with new trials. Finally, we discussed the best way of confirming safety and efficacy of these therapies, including registries and clinical trial design. We close by discussing next steps in the journey to new neuromodulatory therapies for these devastating illnesses. CONCLUSION: Interest and motivation remain strong for deep brain stimulation for psychiatric disease. Progress will require coordinated efforts by all stakeholders.


Asunto(s)
Trastornos Mentales/cirugía , Neurocirugia , Procedimientos Neuroquirúrgicos/métodos , Humanos , Estados Unidos
7.
J Magn Reson Imaging ; 46(4): 951-971, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28295954

RESUMEN

Quantitative susceptibility mapping (QSM) has enabled magnetic resonance imaging (MRI) of tissue magnetic susceptibility to advance from simple qualitative detection of hypointense blooming artifacts to precise quantitative measurement of spatial biodistributions. QSM technology may be regarded to be sufficiently developed and validated to warrant wide dissemination for clinical applications of imaging isotropic susceptibility, which is dominated by metals in tissue, including iron and calcium. These biometals are highly regulated as vital participants in normal cellular biochemistry, and their dysregulations are manifested in a variety of pathologic processes. Therefore, QSM can be used to assess important tissue functions and disease. To facilitate QSM clinical translation, this review aims to organize pertinent information for implementing a robust automated QSM technique in routine MRI practice and to summarize available knowledge on diseases for which QSM can be used to improve patient care. In brief, QSM can be generated with postprocessing whenever gradient echo MRI is performed. QSM can be useful for diseases that involve neurodegeneration, inflammation, hemorrhage, abnormal oxygen consumption, substantial alterations in highly paramagnetic cellular iron, bone mineralization, or pathologic calcification; and for all disorders in which MRI diagnosis or surveillance requires contrast agent injection. Clinicians may consider integrating QSM into their routine imaging practices by including gradient echo sequences in all relevant MRI protocols. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2017;46:951-971.


Asunto(s)
Artefactos , Medios de Contraste , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Metales , Humanos
8.
Neurosurg Focus ; 42(VideoSuppl2): V3, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28366025

RESUMEN

A 59-year-old woman with a 30-year history of essential tremor refractory to medical therapy underwent staged deep brain stimulation of the ventralis intermedius nucleus of the thalamus (VIM). Left-sided lead placement was performed first. Once in the operating room, microelectrode recording (MER) was performed to confirm the appropriate trajectory and identify the VIM border with the ventralis caudalis nucleus. MER was repeated after repositioning 2 mm anteriorly to reduce the likelihood of stimulation-induced paresthesias. Physical examination prior to permanent lead placement demonstrated micro-lesion effect, suggesting optimal trajectory. After implantation of the permanent lead, physical examination showed excellent results. The video can be found here: https://youtu.be/nn3KRdmRCZ4 .


Asunto(s)
Estimulación Encefálica Profunda/métodos , Temblor Esencial/terapia , Núcleos Talámicos Ventrales/fisiología , Electrodos Implantados/efectos adversos , Femenino , Humanos , Persona de Mediana Edad , Resultado del Tratamiento
9.
Neuromodulation ; 20(5): 450-455, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28480524

RESUMEN

OBJECTIVE: High frequency stimulation (HFS) of the subthalamic nucleus (STN) is a well-established therapy for Parkinson's disease (PD), particularly the cardinal motor symptoms and levodopa induced motor complications. Recent studies have suggested the possible role of 60 Hz stimulation in STN-deep brain stimulation (DBS) for patients with gait disorder. The objective of this study was to develop a computational model, which stratifies patients a priori based on symptomatology into different frequency settings (i.e., high frequency or 60 Hz). METHODS: We retrospectively analyzed preoperative MDS-Unified Parkinson's Disease Rating Scale III scores (32 indicators) collected from 20 PD patients implanted with STN-DBS at Mount Sinai Medical Center on either 60 Hz stimulation (ten patients) or HFS (130-185 Hz) (ten patients) for an average of 12 months. Predictive models using the Random Forest classification algorithm were built to associate patient/disease characteristics at surgery to the stimulation frequency. These models were evaluated objectively using leave-one-out cross-validation approach. RESULTS: The computational models produced, stratified patients into 60 Hz or HFS (130-185 Hz) with 95% accuracy. The best models relied on two or three predictors out of the 32 analyzed for classification. Across all predictors, gait and rest tremor of the right hand were consistently the most important. CONCLUSIONS: Computational models were developed using preoperative clinical indicators in PD patients treated with STN-DBS. These models were able to accurately stratify PD patients into 60 Hz stimulation or HFS (130-185 Hz) groups a priori, offering a unique potential to enhance the utilization of this therapy based on clinical subtypes.


Asunto(s)
Simulación por Computador/estadística & datos numéricos , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/cirugía , Terapia por Radiofrecuencia , Núcleo Subtalámico/cirugía , Anciano , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico , Estudios Retrospectivos
10.
Neuromodulation ; 18(8): 664-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25833008

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) is effective in treating the segmental symptoms of Parkinson's disease (PD) as well as axial symptoms that are levodopa responsive. PD patients on chronic DBS who develop axial symptoms and gait disturbances several years later oftentimes are refractory to high frequency stimulation (HFS). Several studies report benefit produced by low frequency subthalamic nucleus (STN) stimulation in such patients, though the sustainability of the effects has been mixed. OBJECTIVE: To report the clinical outcomes of a series of patients with Parkinson's disease and levodopa responsive axial and gait disturbances who were switched to 60 Hz stimulation within one year of their DBS surgery. METHODS: A retrospective review of 5 patients, whose severe pre-DBS, levodopa responsive gait disorders worsened on HFS STN-DBS and were subsequently switched to 60 Hz stimulation within 1 year of their surgery. RESULTS: The median age of this cohort was 66 years with median disease duration of 14 years. Four of 5 patients' experienced acute worsening of their axial and gait UPDRS III scores on HFS. All patients' gait disorder improved with 60 Hz along with amelioration of their segmental symptoms and reduction of their levodopa induced dyskinesia. The median time on HFS prior to switching to 60 Hz was two months. Stimulation through the ventral contacts was utilized in all patients with relatively modest changes achieved in levodopa equivalent daily dose. CONCLUSION: This case series demonstrates the clinical efficacy of utilizing low frequency (60 Hz) STN stimulation early in the DBS programming course in more advanced PD patients with levodopa responsive gait disturbance and freezing of gait. Activation of a broader stimulation field likely contributed to both axial and segmental symptom improvement while possibly aiding in the reduction of dyskinesia.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiología , Anciano , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
11.
bioRxiv ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38766086

RESUMEN

Dopamine (DA) signals originating from substantia nigra (SN) neurons are centrally involved in the regulation of motor and reward processing. DA signals behaviorally relevant events where reward outcomes differ from expectations (reward prediction errors, RPEs). RPEs play a crucial role in learning optimal courses of action and in determining response vigor when an agent expects rewards. Nevertheless, how reward expectations, crucial for RPE calculations, are conveyed to and represented in the dopaminergic system is not fully understood, especially in the human brain where the activity of DA neurons is difficult to study. One possibility, suggested by evidence from animal models, is that DA neurons explicitly encode reward expectations. Alternatively, they may receive RPE information directly from upstream brain regions. To address whether SN neuron activity directly reflects reward expectation information, we directly examined the encoding of reward expectation signals in human putative DA neurons by performing single-unit recordings from the SN of patients undergoing neurosurgery. Patients played a two-armed bandit decision-making task in which they attempted to maximize reward. We show that neuronal firing rates (FR) of putative DA neurons during the reward expectation period explicitly encode reward expectations. First, activity in these neurons was modulated by previous trial outcomes, such that FR were greater after positive outcomes than after neutral or negative outcome trials. Second, this increase in FR was associated with shorter reaction times, consistent with an invigorating effect of DA neuron activity during expectation. These results suggest that human DA neurons explicitly encode reward expectations, providing a neurophysiological substrate for a signal critical for reward learning.

12.
Nat Hum Behav ; 8(4): 718-728, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38409356

RESUMEN

Dopamine and serotonin are hypothesized to guide social behaviours. In humans, however, we have not yet been able to study neuromodulator dynamics as social interaction unfolds. Here, we obtained subsecond estimates of dopamine and serotonin from human substantia nigra pars reticulata during the ultimatum game. Participants, who were patients with Parkinson's disease undergoing awake brain surgery, had to accept or reject monetary offers of varying fairness from human and computer players. They rejected more offers in the human than the computer condition, an effect of social context associated with higher overall levels of dopamine but not serotonin. Regardless of the social context, relative changes in dopamine tracked trial-by-trial changes in offer value-akin to reward prediction errors-whereas serotonin tracked the current offer value. These results show that dopamine and serotonin fluctuations in one of the basal ganglia's main output structures reflect distinct social context and value signals.


Asunto(s)
Dopamina , Enfermedad de Parkinson , Serotonina , Sustancia Negra , Humanos , Serotonina/metabolismo , Dopamina/metabolismo , Sustancia Negra/metabolismo , Masculino , Femenino , Enfermedad de Parkinson/metabolismo , Persona de Mediana Edad , Anciano , Conducta Social , Recompensa
13.
medRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746297

RESUMEN

Single-nucleus RNA sequencing (snRNA-seq) is often used to define gene expression patterns characteristic of brain cell types as well as to identify cell type specific gene expression signatures of neurological and mental illnesses in postmortem human brains. As methods to obtain brain tissue from living individuals emerge, it is essential to characterize gene expression differences associated with tissue originating from either living or postmortem subjects using snRNA-seq, and to assess whether and how such differences may impact snRNA-seq studies of brain tissue. To address this, human prefrontal cortex single nuclei gene expression was generated and compared between 31 samples from living individuals and 21 postmortem samples. The same cell types were consistently identified in living and postmortem nuclei, though for each cell type, a large proportion of genes were differentially expressed between samples from postmortem and living individuals. Notably, estimation of cell type proportions by cell type deconvolution of pseudo-bulk data was found to be more accurate in samples from living individuals. To allow for future integration of living and postmortem brain gene expression, a model was developed that quantifies from gene expression data the probability a human brain tissue sample was obtained postmortem. These probabilities are established as a means to statistically account for the gene expression differences between samples from living and postmortem individuals. Together, the results presented here provide a deep characterization of both differences between snRNA-seq derived from samples from living and postmortem individuals, as well as qualify and account for their effect on common analyses performed on this type of data.

14.
Nat Commun ; 15(1): 5366, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926387

RESUMEN

Adenosine-to-inosine (A-to-I) editing is a prevalent post-transcriptional RNA modification within the brain. Yet, most research has relied on postmortem samples, assuming it is an accurate representation of RNA biology in the living brain. We challenge this assumption by comparing A-to-I editing between postmortem and living prefrontal cortical tissues. Major differences were found, with over 70,000 A-to-I sites showing higher editing levels in postmortem tissues. Increased A-to-I editing in postmortem tissues is linked to higher ADAR and ADARB1 expression, is more pronounced in non-neuronal cells, and indicative of postmortem activation of inflammation and hypoxia. Higher A-to-I editing in living tissues marks sites that are evolutionarily preserved, synaptic, developmentally timed, and disrupted in neurological conditions. Common genetic variants were also found to differentially affect A-to-I editing levels in living versus postmortem tissues. Collectively, these discoveries offer more nuanced and accurate insights into the regulatory mechanisms of RNA editing in the human brain.


Asunto(s)
Adenosina Desaminasa , Adenosina , Autopsia , Encéfalo , Inosina , Edición de ARN , Proteínas de Unión al ARN , Humanos , Adenosina/metabolismo , Adenosina Desaminasa/metabolismo , Adenosina Desaminasa/genética , Encéfalo/metabolismo , Inosina/metabolismo , Inosina/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Corteza Prefrontal/metabolismo , Cambios Post Mortem , Masculino
15.
medRxiv ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38765961

RESUMEN

Adenosine-to-inosine (A-to-I) editing is a prevalent post-transcriptional RNA modification within the brain. Yet, most research has relied on postmortem samples, assuming it is an accurate representation of RNA biology in the living brain. We challenge this assumption by comparing A-to-I editing between postmortem and living prefrontal cortical tissues. Major differences were found, with over 70,000 A-to-I sites showing higher editing levels in postmortem tissues. Increased A-to-I editing in postmortem tissues is linked to higher ADAR1 and ADARB1 expression, is more pronounced in non-neuronal cells, and indicative of postmortem activation of inflammation and hypoxia. Higher A-to-I editing in living tissues marks sites that are evolutionarily preserved, synaptic, developmentally timed, and disrupted in neurological conditions. Common genetic variants were also found to differentially affect A-to-I editing levels in living versus postmortem tissues. Collectively, these discoveries illuminate the nuanced functions and intricate regulatory mechanisms of RNA editing within the human brain.

16.
medRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798344

RESUMEN

The prefrontal cortex (PFC) is a region of the brain that in humans is involved in the production of higher-order functions such as cognition, emotion, perception, and behavior. Neurotransmission in the PFC produces higher-order functions by integrating information from other areas of the brain. At the foundation of neurotransmission, and by extension at the foundation of higher-order brain functions, are an untold number of coordinated molecular processes involving the DNA sequence variants in the genome, RNA transcripts in the transcriptome, and proteins in the proteome. These "multiomic" foundations are poorly understood in humans, perhaps in part because most modern studies that characterize the molecular state of the human PFC use tissue obtained when neurotransmission and higher-order brain functions have ceased (i.e., the postmortem state). Here, analyses are presented on data generated for the Living Brain Project (LBP) to investigate whether PFC tissue from individuals with intact higher-order brain function has characteristic multiomic foundations. Two complementary strategies were employed towards this end. The first strategy was to identify in PFC samples obtained from living study participants a signature of RNA transcript expression associated with neurotransmission measured intracranially at the time of PFC sampling, in some cases while participants performed a task engaging higher-order brain functions. The second strategy was to perform multiomic comparisons between PFC samples obtained from individuals with intact higher-order brain function at the time of sampling (i.e., living study participants) and PFC samples obtained in the postmortem state. RNA transcript expression within multiple PFC cell types was associated with fluctuations of dopaminergic, serotonergic, and/or noradrenergic neurotransmission in the substantia nigra measured while participants played a computer game that engaged higher-order brain functions. A subset of these associations - termed the "transcriptional program associated with neurotransmission" (TPAWN) - were reproduced in analyses of brain RNA transcript expression and intracranial neurotransmission data obtained from a second LBP cohort and from a cohort in an independent study. RNA transcripts involved in TPAWN were found to be (1) enriched for RNA transcripts associated with measures of neurotransmission in rodent and cell models, (2) enriched for RNA transcripts encoded by evolutionarily constrained genes, (3) depleted of RNA transcripts regulated by common DNA sequence variants, and (4) enriched for RNA transcripts implicated in higher-order brain functions by human population genetic studies. In PFC excitatory neurons of living study participants, higher expression of the genes in TPAWN tracked with higher expression of RNA transcripts that in rodent PFC samples are markers of a class of excitatory neurons that connect the PFC to deep brain structures. TPAWN was further reproduced by RNA transcript expression patterns differentiating living PFC samples from postmortem PFC samples, and significant differences between living and postmortem PFC samples were additionally observed with respect to (1) the expression of most primary RNA transcripts, mature RNA transcripts, and proteins, (2) the splicing of most primary RNA transcripts into mature RNA transcripts, (3) the patterns of co-expression between RNA transcripts and proteins, and (4) the effects of some DNA sequence variants on RNA transcript and protein expression. Taken together, this report highlights that studies of brain tissue obtained in a safe and ethical manner from large cohorts of living individuals can help advance understanding of the multiomic foundations of brain function.

17.
Biol Psychiatry ; 96(2): 101-113, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38141909

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) is a promising treatment option for treatment-refractory obsessive-compulsive disorder (OCD). Several stimulation targets have been used, mostly in and around the anterior limb of the internal capsule and ventral striatum. However, the precise target within this region remains a matter of debate. METHODS: Here, we retrospectively studied a multicenter cohort of 82 patients with OCD who underwent DBS of the ventral capsule/ventral striatum and mapped optimal stimulation sites in this region. RESULTS: DBS sweet-spot mapping performed on a discovery set of 58 patients revealed 2 optimal stimulation sites associated with improvements on the Yale-Brown Obsessive Compulsive Scale, one in the anterior limb of the internal capsule that overlapped with a previously identified OCD-DBS response tract and one in the region of the inferior thalamic peduncle and bed nucleus of the stria terminalis. Critically, the nucleus accumbens proper and anterior commissure were associated with beneficial but suboptimal clinical improvements. Moreover, overlap with the resulting sweet- and sour-spots significantly estimated variance in outcomes in an independent cohort of 22 patients from 2 additional DBS centers. Finally, beyond obsessive-compulsive symptoms, stimulation of the anterior site was associated with optimal outcomes for both depression and anxiety, while the posterior site was only associated with improvements in depression. CONCLUSIONS: Our results suggest how to refine targeting of DBS in OCD and may be helpful in guiding DBS programming in existing patients.


Asunto(s)
Estimulación Encefálica Profunda , Cápsula Interna , Trastorno Obsesivo Compulsivo , Humanos , Trastorno Obsesivo Compulsivo/terapia , Estimulación Encefálica Profunda/métodos , Masculino , Femenino , Adulto , Estudios Retrospectivos , Persona de Mediana Edad , Cápsula Interna/diagnóstico por imagen , Estriado Ventral/diagnóstico por imagen , Estriado Ventral/fisiopatología , Resultado del Tratamiento , Adulto Joven
18.
Biol Psychiatry ; 94(4): 352-360, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-36740206

RESUMEN

Connectomics allows mapping of cells and their circuits at the nanometer scale in volumes of approximately 1 mm3. Given that the human cerebral cortex can be 3 mm in thickness, larger volumes are required. Larger-volume circuit reconstructions of human brain are limited by 1) the availability of fresh biopsies; 2) the need for excellent preservation of ultrastructure, including extracellular space; and 3) the requirement of uniform staining throughout the sample, among other technical challenges. Cerebral cortical samples from neurosurgical patients are available owing to lead placement for deep brain stimulation. Described here is an immersion fixation, heavy metal staining, and tissue processing method that consistently provides excellent ultrastructure throughout human and rodent surgical brain samples of volumes 2 × 2 × 2 mm3 and up to 37 mm3 with one dimension ≤2 mm. This method should allow synapse-level circuit analysis in samples from patients with psychiatric and neurologic disorders.


Asunto(s)
Conectoma , Humanos , Conectoma/métodos , Inmersión , Microscopía Electrónica , Coloración y Etiquetado , Encéfalo , Biopsia
19.
J Neurosurg ; 139(5): 1366-1375, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37119111

RESUMEN

OBJECTIVE: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) and globus pallidus interna (GPi) have differential therapeutic effects for Parkinson's disease (PD) that drive patient selection. For example, GPi DBS is preferred for dystonic features and dyskinesia, whereas STN DBS has shown faster tremor control and medication reduction. Connectivity studies comparing these two targets, using patient-specific data, are still lacking. The objective was to find STN and GPi structural connectivity patterns in order to better understand differences in DBS-activated brain circuits between these two stimulation targets and to guide optimal contact selection. METHODS: The authors simulated DBS activation along the main axis of both the STN and GPi by using volume of activated tissue (VAT) modeling with known average stimulation parameters (2.8 V and 60 µsec for STN; 3.3 V and 90 µsec for GPi). The authors modeled VATs in the anterior, middle, and posterior STN and the anterior, midanterior, midposterior, and posterior GPi. The authors generated maps of the connections shared by the patients for each VAT by using probabilistic tractography of diffusion-weighted imaging data obtained in 46 PD patients who underwent DBS (26 with STN and 20 with GPi targeting), and differences between VATs for whole-brain and distal regions of interest (prefrontal cortex, supplementary motor area, primary motor cortex, primary sensory cortex, caudate, motor thalamus, and cerebellum) were generated from structural atlases. Differences between maps were quantified and compared. RESULTS: VATs across the STN and GPi had different structural connectivity patterns. The authors found significant connectivity differences between VATs for all regions of interest. Posterior and middle STN showed stronger connectivity to the primary motor cortex and supplementary motor area (SMA) (p < 0.001). Posterior STN had the strongest connectivity to the primary sensory cortex and motor thalamus (p < 0.001). Posterior GPi showed stronger connectivity to the primary motor cortex (p < 0.001). Connectivity to the SMA was similar for the posterior and midposterior GPi (p > 0.05), which was greater than that for the anterior GPi (p < 0.001). When both nuclei were compared, posterior and middle STN had stronger connectivity to the SMA, cerebellum, and motor thalamus than GPi (all p < 0.001). Posterior GPi and STN had similar connectivity to the primary sensory cortex. CONCLUSIONS: On patient-specific imaging, structural connectivity differences existed between GPi and STN DBS, as measured with standardized electrical field modeling of the DBS targets. These connectivity differences may correlate with the differential clinical benefits obtained by targeting each of the two nuclei with DBS for PD. Prospective work is needed to relate these differences to clinical outcomes and to inform targeting and programming.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Sustancia Blanca , Humanos , Núcleo Subtalámico/diagnóstico por imagen , Globo Pálido/diagnóstico por imagen , Globo Pálido/fisiología , Estimulación Encefálica Profunda/métodos , Estudios Prospectivos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/terapia
20.
Brain Stimul ; 16(3): 867-878, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37217075

RESUMEN

OBJECTIVE: Despite advances in the treatment of psychiatric diseases, currently available therapies do not provide sufficient and durable relief for as many as 30-40% of patients. Neuromodulation, including deep brain stimulation (DBS), has emerged as a potential therapy for persistent disabling disease, however it has not yet gained widespread adoption. In 2016, the American Society for Stereotactic and Functional Neurosurgery (ASSFN) convened a meeting with leaders in the field to discuss a roadmap for the path forward. A follow-up meeting in 2022 aimed to review the current state of the field and to identify critical barriers and milestones for progress. DESIGN: The ASSFN convened a meeting on June 3, 2022 in Atlanta, Georgia and included leaders from the fields of neurology, neurosurgery, and psychiatry along with colleagues from industry, government, ethics, and law. The goal was to review the current state of the field, assess for advances or setbacks in the interim six years, and suggest a future path forward. The participants focused on five areas of interest: interdisciplinary engagement, regulatory pathways and trial design, disease biomarkers, ethics of psychiatric surgery, and resource allocation/prioritization. The proceedings are summarized here. CONCLUSION: The field of surgical psychiatry has made significant progress since our last expert meeting. Although weakness and threats to the development of novel surgical therapies exist, the identified strengths and opportunities promise to move the field through methodically rigorous and biologically-based approaches. The experts agree that ethics, law, patient engagement, and multidisciplinary teams will be critical to any potential growth in this area.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Mentales , Neurocirugia , Psicocirugía , Humanos , Estados Unidos , Procedimientos Neuroquirúrgicos , Trastornos Mentales/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA