Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(8): 104975, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37429506

RESUMEN

Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidative stress are increasingly recognized as important causes of renal diseases. Inflammation is closely associated with mitochondrial damage. The molecular connection between inflammation and mitochondrial metabolism remains to be elucidated. Recently, nicotinamide adenine nucleotide (NAD+) metabolism has been found to regulate immune function and inflammation. In the present studies, we tested the hypothesis that enhancing NAD metabolism could prevent inflammation in and progression of DKD. We found that treatment of db/db mice with type 2 diabetes with nicotinamide riboside (NR) prevented several manifestations of kidney dysfunction (i.e., albuminuria, increased urinary kidney injury marker-1 (KIM1) excretion, and pathologic changes). These effects were associated with decreased inflammation, at least in part via inhibiting the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway. An antagonist of the serum stimulator of interferon genes (STING) and whole-body STING deletion in diabetic mice showed similar renoprotection. Further analysis found that NR increased SIRT3 activity and improved mitochondrial function, which led to decreased mitochondrial DNA damage, a trigger for mitochondrial DNA leakage which activates the cGAS-STING pathway. Overall, these data show that NR supplementation boosted NAD metabolism to augment mitochondrial function, reducing inflammation and thereby preventing the progression of diabetic kidney disease.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/metabolismo , NAD/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/metabolismo , Mitocondrias/metabolismo , ADN Mitocondrial/metabolismo , Nucleotidiltransferasas/metabolismo , Inflamación/metabolismo , Interferones/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-38961841

RESUMEN

HIV disease remains prevalent in the USA and is particularly prevalent in sub-Saharan Africa. Recent investigations revealed that mitochondrial dysfunction in kidney contributes to HIV-associated nephropathy (HIVAN) in Tg26 transgenic mice. We hypothesized that nicotinamide adenine dinucleotide (NAD) deficiency contributes to energetic dysfunction and progressive tubular injury. We investigated metabolomic mechanisms of HIVAN tubulopathy. Tg26 and wild-type (WT) mice were treated with the farnesoid-X receptor (FXR) agonist INT-747 or nicotinamide riboside (NR) from 6 to 12 weeks of age. Multi-omic approaches were used to characterize kidney tissue transcriptomes and metabolomes. Treatment with INT-747 or NR ameliorated kidney tubular injury, as shown by serum creatinine, the tubular injury marker urinary neutrophil-associated lipocalin and tubular morphometry. Integrated analysis of metabolomic and transcriptomic measurements showed that NAD levels and production were globally downregulated in Tg26 mouse kidney, especially nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway. Further, NAD-dependent deacetylase sirtuin3 activity and mitochondrial oxidative phosphorylation activity were lower in ex vivo proximal tubules from Tg26 mouse kidneys compared to those of WT mice. Restoration of NAD levels in kidney improved these abnormalities. These data suggest that NAD deficiency might be a treatable target for HIVAN.

3.
Lab Invest ; 104(5): 100336, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38266922

RESUMEN

Chronic kidney disease progresses through the replacement of functional tissue compartments with fibrosis, a maladaptive repair process. Shifting kidney repair toward a physiologically intact architecture, rather than fibrosis, is key to blocking chronic kidney disease progression. Much research into the mechanisms of fibrosis is performed in rodent models with less attention to the human genetic context. Recently, human induced pluripotent stem cell (iPSC)-derived organoids have shown promise in overcoming the limitation. In this study, we developed a fibrosis model that uses human iPSC-based 3-dimensional renal organoids, in which exogenous transforming growth factor-ß1 (TGF-ß1) induced the production of extracellular matrix. TGF-ß1-treated organoids showed tubulocentric collagen 1α1 production by regulating downstream transcriptional regulators, Farnesoid X receptor, phosphorylated mothers against decapentaplegic homolog 3 (p-SMAD3), and transcriptional coactivator with PDZ-binding motif (TAZ). Increased nuclear TAZ expression was confirmed in the tubular epithelium in human kidney biopsies with tubular injury and early fibrosis. A dual bile acid receptor agonist (INT-767) increased Farnesoid X receptor and reduced p-SMAD3 and TAZ, attenuating TGF-ß1-induced fibrosis in kidney organoids. Finally, we show that TAZ interacted with TEA-domain transcription factors and p-SMAD3 with TAZ and TEA-domain transcription factor 4 coregulating collagen 1α1 gene transcription. In summary, we establish a novel, readily manipulable fibrogenesis model and posit a role for bile acid receptor agonism early in renal parenchymal fibrosis.


Asunto(s)
Fibrosis , Células Madre Pluripotentes Inducidas , Riñón , Organoides , Factor de Crecimiento Transformador beta1 , Humanos , Organoides/metabolismo , Organoides/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Riñón/metabolismo , Riñón/patología
4.
Am J Pathol ; 193(12): 1969-1987, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37717940

RESUMEN

A gradual decline in renal function occurs even in healthy aging individuals. In addition to aging, per se, concurrent metabolic syndrome and hypertension, which are common in the aging population, can induce mitochondrial dysfunction and inflammation, which collectively contribute to age-related kidney dysfunction and disease. This study examined the role of the nuclear hormone receptors, the estrogen-related receptors (ERRs), in regulation of age-related mitochondrial dysfunction and inflammation. The ERRs were decreased in both aging human and mouse kidneys and were preserved in aging mice with lifelong caloric restriction (CR). A pan-ERR agonist, SLU-PP-332, was used to treat 21-month-old mice for 8 weeks. In addition, 21-month-old mice were treated with a stimulator of interferon genes (STING) inhibitor, C-176, for 3 weeks. Remarkably, similar to CR, an 8-week treatment with a pan-ERR agonist reversed the age-related increases in albuminuria, podocyte loss, mitochondrial dysfunction, and inflammatory cytokines, via the cyclic GMP-AMP synthase-STING and STAT3 signaling pathways. A 3-week treatment of 21-month-old mice with a STING inhibitor reversed the increases in inflammatory cytokines and the senescence marker, p21/cyclin dependent kinase inhibitor 1A (Cdkn1a), but also unexpectedly reversed the age-related decreases in PPARG coactivator (PGC)-1α, ERRα, mitochondrial complexes, and medium chain acyl coenzyme A dehydrogenase (MCAD) expression. These studies identified ERRs as CR mimetics and as important modulators of age-related mitochondrial dysfunction and inflammation. These findings highlight novel druggable pathways that can be further evaluated to prevent progression of age-related kidney disease.


Asunto(s)
Inflamación , Riñón , Ratones , Humanos , Animales , Anciano , Lactante , Recién Nacido , Riñón/metabolismo , Inflamación/metabolismo , Estrógenos/metabolismo , Mitocondrias/metabolismo , Citocinas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
5.
J Korean Med Sci ; 39(14): e134, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622939

RESUMEN

The global research and pharmaceutical community rapidly mobilized to develop treatments for coronavirus disease 2019 (COVID-19). Existing treatments have been repurposed and new drugs have emerged. Here we summarize mechanisms and clinical trials of COVID-19 therapeutics approved or in development. Two reviewers, working independently, reviewed published data for approved COVID-19 vaccines and drugs, as well as developmental pipelines, using databases from the following organizations: United States Food and Drug Administration (US-FDA), European Medicines Agency (EMA), Japanese Pharmaceutical and Medical Devices Agency (PMDA), and ClinicalTrials.gov. In all, 387 drugs were found for initial review. After removing unrelated trials and drugs, 66 drugs were selected, including 17 approved drugs and 49 drugs under development. These drugs were classified into six categories: 1) drugs targeting the viral life cycle 2) Anti-severe acute respiratory syndrome coronavirus 2 Monoclonal Antibodies, 3) immunomodulators, 4) anti-coagulants, 5) COVID-19-induced neuropathy drugs, and 6) other therapeutics. Among the 49 drugs under development are the following: 6 drugs targeting the viral life cycle, 12 immunosuppression drugs, 2 immunostimulants, 2 HIF-PHD targeting drugs, 3 GM-CSF targeting drugs, 5 anti-coagulants, 2 COVID-19-induced neuropathy drugs, and 17 others. This review provides insight into mechanisms of action, properties, and indications for COVID-19 medications.


Asunto(s)
COVID-19 , Estados Unidos , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19/uso terapéutico , Antivirales/uso terapéutico , Antivirales/farmacología , Anticuerpos Antivirales , Preparaciones Farmacéuticas
6.
J Biol Chem ; 298(11): 102530, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36209823

RESUMEN

Nonalcoholic steatohepatitis (NASH) is the most common chronic liver disease in the US, partly due to the increasing incidence of metabolic syndrome, obesity, and type 2 diabetes. The roles of bile acids and their receptors, such as the nuclear receptor farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5, on the development of NASH are not fully clear. C57BL/6J male mice fed a Western diet (WD) develop characteristics of NASH, allowing determination of the effects of FXR and TGR5 agonists on this disease. Here we show that the FXR-TGR5 dual agonist INT-767 prevents progression of WD-induced hepatic steatosis, inflammation, and fibrosis, as determined by histological and biochemical assays and novel label-free microscopy imaging techniques, including third harmonic generation, second harmonic generation, and fluorescence lifetime imaging microscopy. Furthermore, we show INT-767 decreases liver fatty acid synthesis and fatty acid and cholesterol uptake, as well as liver inflammation. INT-767 markedly changed bile acid composition in the liver and intestine, leading to notable decreases in the hydrophobicity index of bile acids, known to limit cholesterol and lipid absorption. In addition, INT-767 upregulated expression of liver p-AMPK, SIRT1, PGC-1α, and SIRT3, which are master regulators of mitochondrial function. Finally, we found INT-767 treatment reduced WD-induced dysbiosis of gut microbiota. Interestingly, the effects of INT-767 in attenuating NASH were absent in FXR-null mice, but still present in TGR5-null mice. Our findings support treatment and prevention protocols with the dual FXR-TGR5 agonist INT-767 arrest progression of WD-induced NASH in mice mediated by FXR-dependent, TGR5-independent mechanisms.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Animales , Masculino , Ratones , Ácidos y Sales Biliares , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Dieta Occidental , Ácidos Grasos , Fibrosis , Inflamación/complicaciones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
7.
Am J Physiol Renal Physiol ; 325(1): F121-F133, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37167274

RESUMEN

Transforming growth factor (TGF)-ß1 contributes to podocyte injury in various glomerular diseases, including diabetic kidney disease, probably at least in part by attenuating the expression of Wilms' tumor 1 (WT1). However, the precise mechanisms remain to be defined. We performed miRNA microarray analysis in a human podocyte cell line cultured with TGF-ß1 to examine the roles of miRNAs in podocyte damage. The microarray analysis identified miR-143-3p as the miRNA with the greatest increase following exposure to TGF-ß1. Quantitative RT-PCR confirmed a significant increase in the miR-143-3p/145-5p cluster in TGF-ß1-supplemented cultured podocytes and demonstrated upregulation of miR-143-3p in the glomeruli of mice with type 2 diabetes. Ectopic expression of miR-143-3p and miR-145-5p suppressed WT1 expression in cultured podocytes. Furthermore, inhibition of Smad or mammalian target of rapamycin signaling each partially reversed the TGF-ß1-induced increase in miR-143-3p/145-5p and decrease in WT1. In conclusion, TGF-ß1 induces expression of miR-143-3p/145-5p in part through Smad and mammalian target of rapamycin pathways, and miR-143-3p/145-5p reduces expression of WT1 in cultured human podocytes. miR-143-3p/145-5p may contribute to TGF-ß1-induced podocyte injury.NEW & NOTEWORTHY This study by miRNA microarray analysis demonstrated that miR-143-3p expression was upregulated in cultured human podocytes following exposure to transforming growth factor (TGF)-ß1. Furthermore, we report that the miR-143/145 cluster contributes to decreased expression of Wilms' tumor 1, which represents a possible mechanism for podocyte injury induced by TGF-ß1. This study is important because it presents a novel mechanism for TGF-ß-associated glomerular diseases, including diabetic kidney disease (DKD), and suggests potential therapeutic strategies targeting miR-143-3p/145-5p.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , MicroARNs , Podocitos , Factor de Crecimiento Transformador beta1 , Animales , Humanos , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/metabolismo , MicroARNs/metabolismo , Podocitos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo
8.
Kidney Int ; 103(3): 529-543, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36565808

RESUMEN

Chronic kidney disease (CKD) is a common cause of morbidity in human immunodeficiency virus (HIV)-positive individuals. HIV infection leads to a wide spectrum of kidney cell damage, including tubular epithelial cell (TEC) injury. Among the HIV-1 proteins, the pathologic effects of viral protein R (Vpr) are well established and include DNA damage response, cell cycle arrest, and cell death. Several in vitro studies have unraveled the molecular pathways driving the cytopathic effects of Vpr in tubular epithelial cells. However, the in vivo effects of Vpr on tubular injury and CKD pathogenesis have not been thoroughly investigated. Here, we use a novel inducible tubular epithelial cell-specific Vpr transgenic mouse model to show that Vpr expression leads to progressive tubulointerstitial damage, interstitial inflammation and fibrosis, and tubular cyst development. Importantly, Vpr-expressing tubular epithelial cells displayed significant hypertrophy, aberrant cell division, and atrophy; all reminiscent of tubular injuries observed in human HIV-associated nephropathy (HIVAN). Single-cell RNA sequencing analysis revealed the Vpr-mediated transcriptomic responses in specific tubular subsets and highlighted the potential multifaceted role of p53 in the regulation of cell metabolism, proliferation, and death pathways in Vpr-expressing tubular epithelial cells. Thus, our study demonstrates that HIV Vpr expression in tubular cells is sufficient to induce HIVAN-like tubulointerstitial damage and fibrosis, independent of glomerulosclerosis and proteinuria. Additionally, as this new mouse model develops progressive CKD with diffuse fibrosis and kidney failure, it can serve as a useful tool to examine the mechanisms of kidney disease progression and fibrosis in vivo.


Asunto(s)
Nefropatía Asociada a SIDA , Productos del Gen vpr , Infecciones por VIH , VIH-1 , Insuficiencia Renal Crónica , Animales , Humanos , Ratones , Nefropatía Asociada a SIDA/genética , Modelos Animales de Enfermedad , Productos del Gen vpr/genética , Productos del Gen vpr/metabolismo , Productos del Gen vpr/farmacología , Infecciones por VIH/complicaciones , VIH-1/genética , VIH-1/metabolismo , Proteínas del Virus de la Inmunodeficiencia Humana , Ratones Transgénicos , Insuficiencia Renal Crónica/complicaciones
9.
Kidney Int ; 103(3): 565-579, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36442540

RESUMEN

The diagnosis of nephrotic syndrome relies on clinical presentation and descriptive patterns of injury on kidney biopsies, but not specific to underlying pathobiology. Consequently, there are variable rates of progression and response to therapy within diagnoses. Here, an unbiased transcriptomic-driven approach was used to identify molecular pathways which are shared by subgroups of patients with either minimal change disease (MCD) or focal segmental glomerulosclerosis (FSGS). Kidney tissue transcriptomic profile-based clustering identified three patient subgroups with shared molecular signatures across independent, North American, European, and African cohorts. One subgroup had significantly greater disease progression (Hazard Ratio 5.2) which persisted after adjusting for diagnosis and clinical measures (Hazard Ratio 3.8). Inclusion in this subgroup was retained even when clustering was limited to those with less than 25% interstitial fibrosis. The molecular profile of this subgroup was largely consistent with tumor necrosis factor (TNF) pathway activation. Two TNF pathway urine markers were identified, tissue inhibitor of metalloproteinases-1 (TIMP-1) and monocyte chemoattractant protein-1 (MCP-1), that could be used to predict an individual's TNF pathway activation score. Kidney organoids and single-nucleus RNA-sequencing of participant kidney biopsies, validated TNF-dependent increases in pathway activation score, transcript and protein levels of TIMP-1 and MCP-1, in resident kidney cells. Thus, molecular profiling identified a subgroup of patients with either MCD or FSGS who shared kidney TNF pathway activation and poor outcomes. A clinical trial testing targeted therapies in patients selected using urinary markers of TNF pathway activation is ongoing.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Nefrología , Nefrosis Lipoidea , Síndrome Nefrótico , Humanos , Glomeruloesclerosis Focal y Segmentaria/patología , Nefrosis Lipoidea/diagnóstico , Inhibidor Tisular de Metaloproteinasa-1 , Síndrome Nefrótico/diagnóstico , Factores de Necrosis Tumoral/uso terapéutico
10.
Hum Mol Genet ; 30(3-4): 182-197, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33517446

RESUMEN

Lipotoxicity was recently reported in several forms of kidney disease, including focal segmental glomerulosclerosis (FSGS). Susceptibility to FSGS in African Americans is associated with the presence of genetic variants of the Apolipoprotein L1 gene (APOL1) named G1 and G2. If and how endogenous APOL1 may alter mitochondrial function by the modifying cellular lipid metabolism is unknown. Using transgenic mice expressing the APOL1 variants (G0, G1 or G2) under endogenous promoter, we show that APOL1 risk variant expression in transgenic mice does not impair kidney function at baseline. However, APOL1 G1 expression worsens proteinuria and kidney function in mice characterized by the podocyte inducible expression of nuclear factor of activated T-cells (NFAT), which we have found to cause FSGS. APOL1 G1 expression in this FSGS-model also results in increased triglyceride and cholesterol ester contents in kidney cortices, where lipid accumulation correlated with loss of renal function. In vitro, we show that the expression of endogenous APOL1 G1/G2 in human urinary podocytes is associated with increased cellular triglyceride content and is accompanied by mitochondrial dysfunction in the presence of compensatory oxidative phosphorylation (OXPHOS) complexes elevation. Our findings indicate that APOL1 risk variant expression increases the susceptibility to lipid-dependent podocyte injury, ultimately leading to mitochondrial dysfunction.


Asunto(s)
Apolipoproteína L1/genética , Variación Genética , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Podocitos/metabolismo , Negro o Afroamericano/genética , Animales , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/fisiopatología , Homeostasis , Humanos , Ratones , Ratones Transgénicos , Mitocondrias/fisiología , Podocitos/fisiología , Proteinuria , Triglicéridos/metabolismo
11.
J Transl Med ; 21(1): 706, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814337

RESUMEN

Early-stage detection of chronic kidney diseases (CKD) is important to treatment that may slow and occasionally halt CKD progression. CKD of diverse etiologies share similar histologic patterns of glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Macro-vascular disease and micro-vascular disease promote tissue ischemia, contributing to injury. Tissue ischemia promotes hypoxia, and this in turn activates the hypoxia-inducible transcription factors (HIFs). HIF-1α and HIF-2α, share a dimer partner, HIF-1ß, with the aryl hydrocarbon receptor (AHR) and are each activated in CKD and associated with kidney cellular nicotinamide adenine dinucleotide (NAD) depletion. The Preiss-Handler, salvage, and de novo pathways regulate NAD biosynthesis and gap-junctions regulate NAD cellular retention. In the Preiss-Handler pathway, niacin forms NAD. Niacin also exhibits crosstalk with HIF and AHR cell signals in the regulation of insulin sensitivity, which is a complication in CKD. Dysregulated enzyme activity in the NAD de novo pathway increases the levels of circulating tryptophan metabolites that activate AHR, resulting in poly-ADP ribose polymerase activation, thrombosis, endothelial dysfunction, and immunosuppression. Therapeutically, metabolites from the NAD salvage pathway increase NAD production and subsequent sirtuin deacetylase activity, resulting in reduced activation of retinoic acid-inducible gene I, p53, NF-κB and SMAD2 but increased activation of FOXO1, PGC-1α, and DNA methyltransferase-1. These post-translational responses may also be initiated through non-coding RNAs (ncRNAs), which are additionally altered in CKD. Nanoparticles traverse biological systems and can penetrate almost all tissues as disease biomarkers and drug delivery carriers. Targeted delivery of non-coding RNAs or NAD metabolites with nanoparticles may enable the development of more effective diagnostics and therapies to treat CKD.


Asunto(s)
Niacina , Insuficiencia Renal Crónica , Enfermedades Vasculares , Humanos , NAD/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hipoxia , Isquemia
12.
Am J Kidney Dis ; 81(6): 635-646.e1, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36623684

RESUMEN

RATIONALE & OBJECTIVE: Focal segmental glomerulosclerosis (FSGS) is a major cause of pediatric nephrotic syndrome, and African Americans exhibit an increased risk for developing FSGS compared with other populations. Predisposing genetic factors have previously been described in adults. Here we performed genomic screening of primary FSGS in a pediatric African American population. STUDY DESIGN: Prospective cohort with case-control genetic association study design. SETTING & PARTICIPANTS: 140 African American children with chronic kidney disease from the Chronic Kidney Disease in Children (CKiD) cohort, including 32 cases with FSGS. PREDICTORS: Over 680,000 common single-nucleotide polymorphisms (SNPs) were tested for association. We also ran a pathway enrichment analysis and a human leucocyte antigen (HLA)-focused association study. OUTCOME: Primary biopsy-proven pediatric FSGS. ANALYTICAL APPROACH: Multivariate logistic regression models. RESULTS: The genome-wide association study revealed 169 SNPs from 14 independent loci significantly associated with FSGS (false discovery rate [FDR]<5%). We observed notable signals for genetic variants within the APOL1 (P=8.6×10-7; OR, 25.8 [95% CI, 7.1-94.0]), ALMS1 (P=1.3×10-7; 13.0% in FSGS cases vs 0% in controls), and FGFR4 (P=4.3×10-6; OR, 24.8 [95% CI, 6.3-97.7]) genes, all of which had previously been associated with adult FSGS, kidney function, or chronic kidney disease. We also highlighted novel, functionally relevant genes, including GRB2 (which encodes a slit diaphragm protein promoting podocyte structure through actin polymerization) and ITGB1 (which is linked to renal injuries). Our results suggest a major role for immune responses and antigen presentation in pediatric FSGS through (1) associations with SNPs in PTPRJ (or CD148, P=3.5×10-7), which plays a role in T-cell receptor signaling, (2) HLA-DRB1∗11:01 association (P=6.1×10-3; OR, 4.5 [95% CI, 1.5-13.0]), and (3) signaling pathway enrichment (P=1.3×10-6). LIMITATIONS: Sample size and no independent replication cohort with genomic data readily available. CONCLUSIONS: Our genetic study has identified functionally relevant risk factors and the importance of immune regulation for pediatric primary FSGS, which contributes to a better description of its molecular pathophysiological mechanisms. PLAIN-LANGUAGE SUMMARY: We assessed the genetic risk factors for primary focal segmental glomerulosclerosis (FSGS) by simultaneously testing over 680,000 genetic markers spread across the genome in 140 children, including 32 with FSGS lesions. Fourteen independent genetic regions were significantly associated with pediatric FSGS, including APOL1 and ALMS1-NAT8, which were previously found to be associated with FSGS and chronic kidney diseases in adults. Novel genes with relevant biological functions were also highlighted, such as GRB2 and FGFR4, which play a role in the kidney filtration barrier and in kidney cell differentiation, respectively. Finally, we revealed the importance of immune regulation in pediatric FSGS through associations involving cell surface proteins presenting antigens to the immune system and interacting with T-cell receptors.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Insuficiencia Renal Crónica , Adulto , Humanos , Niño , Glomeruloesclerosis Focal y Segmentaria/patología , Apolipoproteína L1/genética , Estudio de Asociación del Genoma Completo , Estudios Prospectivos , Factores de Riesgo , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética
13.
Am J Kidney Dis ; 81(6): 695-706.e1, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36608921

RESUMEN

RATIONALE & OBJECTIVE: Adolescent- and adult-onset minimal change disease (MCD) may have a clinical course distinct from childhood-onset disease. We characterized the course of children and adults with MCD in the Cure Glomerulonephropathy Network (CureGN) and assessed predictors of rituximab response. STUDY DESIGN: Prospective, multicenter, observational study. STUDY PARTICIPANTS: CureGN participants with proven MCD on biopsy. EXPOSURE: Age at disease onset, initiation of renin-angiotensin-aldosterone system (RAAS) blockade, and immunosuppression including rituximab during the study period. OUTCOME: Relapse and remission, change in estimated glomerular filtration rate (eGFR), and kidney failure. ANALYTICAL APPROACH: Remission and relapse probabilities were estimated using Kaplan-Meier curves and gap time recurrent event models. Linear regression models were used for the outcome of change in eGFR. Cox proportional hazards models were used to estimate the association between rituximab administration and remission. RESULTS: The study included 304 childhood- (≤12 years old), 49 adolescent- (13-17 years old), and 201 adult- (≥18 years) onset participants with 2.7-3.2 years of follow-up after enrollment. Children had a longer time to biopsy (238 vs 23 and 36 days in adolescent- and adult-onset participants, respectively; P<0.001) and were more likely to have received therapy before biopsy. Children were more likely to be treated with immunosuppression but not RAAS blockade. The rate of relapse was higher in childhood- versus adult-onset participants (HR, 1.69 [95% CI, 1.29-2.21]). The probability of remission was also higher in childhood-onset disease (HR, 1.33 [95%CI, 1.02-1.72]). In all groups eGFR loss was minimal. Children were more likely to remit after rituximab than those with adolescent- or adult-onset disease (adjusted HR, 2.1; P=0.003). Across all groups, glucocorticoid sensitivity was associated with a greater likelihood of achieving complete remission after rituximab (adjusted HR, 2.62; P=0.002). LIMITATIONS: CureGN was limited to biopsy-proven disease. Comparisons of childhood to nonchildhood cases of MCD may be subject to selection bias, given that childhood cases who undergo a biopsy may be limited to patients who are least responsive to initial therapy. CONCLUSIONS: Among patients with MCD who underwent kidney biopsy, there were differences in the course (relapse and remission) of childhood-onset compared with adolescent- and adult-onset disease, as well as rituximab response. PLAIN-LANGUAGE SUMMARY: Minimal change disease is a biopsy diagnosis for nephrotic syndrome. It is diagnosed in childhood, adolescence, or adulthood. Patients and clinicians often have questions about what to expect in the disease course and how to plan therapies. We analyzed a group of patients followed longitudinally as part of the Cure Glomerulonephropathy Network (CureGN) and describe the differences in disease (relapse and remission) based on the age of onset. We also analyzed rituximab response. We found that those with childhood-onset disease had a higher rate of relapse but also have a higher probability of reaching remission when compared with adolescent- or adult-onset disease. Children and all steroid-responsive patients are more likely to achieve remission after rituximab.


Asunto(s)
Nefrosis Lipoidea , Síndrome Nefrótico , Adulto , Niño , Adolescente , Humanos , Nefrosis Lipoidea/patología , Rituximab/uso terapéutico , Edad de Inicio , Estudios Prospectivos , Progresión de la Enfermedad , Síndrome Nefrótico/patología , Biopsia , Recurrencia , Resultado del Tratamiento , Estudios Retrospectivos
14.
Mol Ther ; 30(7): 2491-2504, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35450819

RESUMEN

Coding variants (named G1 and G2) in Apolipoprotein L1 (APOL1) can explain most excess risk of kidney disease observed in African American individuals. It has been proposed that risk variant APOL1 dose, such as increased risk variant APOL1 level serves as a trigger (second hit) for disease development. The goal of this study was to determine whether lowering risk variant APOL1 levels protects from disease development in a podocyte-specific transgenic mouse disease model. We administered antisense oligonucleotides (ASO) targeting APOL1 to podocyte-specific G2APOL1 mice and observed efficient reduction of APOL1 levels. APOL1 ASO1, which more efficiently lowered APOL1 transcript levels, protected mice from albuminuria, glomerulosclerosis, tubulointerstitial fibrosis, and renal failure. Administration of APOL1 ASO1 was effective even for established disease in the NEFTA-rtTA/TRE-G2APOL1 (NEFTA/G2APOL1) mice. We observed a strong correlation between APOL1 transcript level and disease severity. We concluded that APOL1 ASO1 may be an effective therapeutic approach for APOL1-associated glomerular disease.


Asunto(s)
Enfermedades Renales , Podocitos , Insuficiencia Renal , Animales , Apolipoproteína L1/genética , Apolipoproteínas/genética , Variación Genética , Enfermedades Renales/genética , Enfermedades Renales/terapia , Ratones , Ratones Transgénicos , Oligonucleótidos Antisentido/genética
15.
Proc Natl Acad Sci U S A ; 117(10): 5409-5419, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32094169

RESUMEN

Type III IFN lambdas (IFN-λ) have recently been described as important mediators of immune responses at barrier surfaces. However, their role in autoimmune diseases such as systemic lupus erythematosus (SLE), a condition characterized by aberrant type I IFN signaling, has not been determined. Here, we identify a nonredundant role for IFN-λ in immune dysregulation and tissue inflammation in a model of TLR7-induced lupus. IFN-λ protein is increased in murine lupus and IFN-λ receptor (Ifnlr1) deficiency significantly reduces immune cell activation and associated organ damage in the skin and kidneys without effects on autoantibody production. Single-cell RNA sequencing in mouse spleen and human peripheral blood revealed that only mouse neutrophils and human B cells are directly responsive to this cytokine. Rather, IFN-λ activates keratinocytes and mesangial cells to produce chemokines that induce immune cell recruitment and promote tissue inflammation. These data provide insights into the immunobiology of SLE and identify type III IFNs as important factors for tissue-specific pathology in this disease.


Asunto(s)
Interferones/fisiología , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/patología , Animales , Linfocitos B/inmunología , Línea Celular , Eliminación de Gen , Humanos , Imiquimod/farmacología , Inflamación/inmunología , Inflamación/patología , Inductores de Interferón/farmacología , Interferón Tipo I/fisiología , Interferones/farmacología , Queratinocitos/efectos de los fármacos , Queratinocitos/inmunología , Queratinocitos/patología , Células Mesangiales/efectos de los fármacos , Células Mesangiales/inmunología , Células Mesangiales/patología , Ratones Endogámicos C57BL , Ratones Mutantes , Receptores de Interferón/genética , Transducción de Señal , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 7/fisiología , Interferón lambda
16.
J Am Soc Nephrol ; 33(1): 213-224, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34706968

RESUMEN

BACKGROUND: α-Globin is expressed in endothelial cells of resistance arteries, where it limits endothelial nitric oxide signaling and enhances α-adrenergic-mediated vasoconstriction. α-Globin gene (HBA) copy number is variable in people of African descent and other populations worldwide. Given the protective effect of nitric oxide in the kidney, we hypothesized that HBA copy number would be associated with kidney disease risk. METHODS: Community-dwelling Black Americans aged ≥45 years old were enrolled in a national longitudinal cohort from 2003 through 2007. HBA copy number was measured using droplet digital PCR. The prevalence ratio (PR) of CKD and the relative risk (RR) of incident reduced eGFR were calculated using modified Poisson multivariable regression. The hazard ratio (HR) of incident ESKD was calculated using Cox proportional hazards multivariable regression. RESULTS: Among 9908 participants, HBA copy number varied from 2 to 6. In analyses adjusted for demographic, clinical, and genetic risk factors, a one-copy increase in HBA was associated with 14% greater prevalence of CKD (PR, 1.14; 95% CI, 1.07 to 1.21; P<0.0001). While HBA copy number was not associated with incident reduced eGFR (RR, 1.06; 95% CI, 0.94 to 1.19; P=0.38), the hazard of incident ESKD was 32% higher for each additional copy of HBA (HR, 1.32; 95% CI, 1.09 to 1.61; P=0.005). CONCLUSIONS: Increasing HBA copy number was associated with a greater prevalence of CKD and incidence of ESKD in a national longitudinal cohort of Black Americans.


Asunto(s)
Negro o Afroamericano/estadística & datos numéricos , Dosificación de Gen , Fallo Renal Crónico/etnología , Fallo Renal Crónico/genética , Globinas alfa/genética , Anciano , Femenino , Tasa de Filtración Glomerular , Humanos , Incidencia , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Prevalencia , Modelos de Riesgos Proporcionales
17.
Kidney Int ; 102(1): 16-19, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35738828

RESUMEN

McNulty and colleagues describe the glomerular transcriptional landscape of subjects with APOL1 (the gene encoding apolipoprotein L1)-associated kidney disease, using bulk RNA sequencing. They found the following: APOL1 gene expression was higher in individuals with APOL1 high-risk genetic status; in glomeruli, STC1, encoding stanniocalcin, was the most upregulated gene, and CCL18, encoding C-C motif chemokine ligand 18, was the most downregulated gene; and nuclear factor kappa BNF-κB inhibitor-interacting Ras-like 1 (NKIRAS1) is the strongest hub gene. These findings identify disease pathways that might mediate or mitigate APOL1-associated nephropathies.


Asunto(s)
Apolipoproteína L1 , Enfermedades Renales , Transcriptoma , Apolipoproteína L1/genética , Humanos , Riñón/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Lipoproteínas HDL/genética , Factores de Riesgo
18.
Kidney Int ; 102(2): 337-354, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35513123

RESUMEN

Patients with chronic kidney disease and experimental animal models of kidney fibrosis manifest diverse progression rates. Genetic susceptibility may contribute to this diversity, but the causes remain largely unknown. We have previously described kidney fibrosis with a mild or severe phenotype in mice expressing transforming growth factor-beta1 (TGF-ß1) under the control of a mouse albumin promoter (Alb/TGF-ß1), on a mixed genetic background with CBAxC57Bl6 mice. Here, we aimed to examine how genetic background may influence kidney fibrosis in TGF-ß1 transgenic mice, and in the unilateral ureteral obstruction (UUO) and subtotal nephrectomy (SNX) mouse models. Congenic C57Bl6(B6)-TGFß and CBAxB6-TGFß (F1) transgenic mice were generated and survival, proteinuria, kidney histology, transcriptome and protein expressions were analyzed. We investigated the kidneys of B6 and CBA mice subjected to UUO and SNX, and the effects of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) neutralization on the fibrotic process. CBAxB6-TGFß mice developed severe kidney fibrosis and premature death, while B6-TGF-ß mice had mild fibrosis and prolonged survival. Kidney early growth response factor-2 (EGR2) and TIMP-1 expression were induced only in CBAxB6-TGFß mice. Similar strain-dependent early changes in EGR2 and TIMP-1 of mice subjected to UUO or SNX were observed. TIMP-1 neutralization in vivo hindered fibrosis both in transgenic mice and the SNX model. EGR2 over-expression in cultured HEK293 cells induced TIMP-1 while EGR2 silencing hindered TGF-ß induced TIMP-1 production in HK-2 cells and ureteral obstructed kidneys. Finally, EGR2 and TIMP1 was increased in human kidneys manifesting focal segmental glomerulosclerosis suggesting a correlation between animal studies and patient clinical settings. Thus, our observations demonstrate a strong relationship between genetic background and the progression of kidney fibrosis, which might involve early altered EGR2 and TIMP-1 response, but the relationship to patient genetics remains to be explored.


Asunto(s)
Proteína 2 de la Respuesta de Crecimiento Precoz , Insuficiencia Renal Crónica , Inhibidor Tisular de Metaloproteinasa-1 , Obstrucción Ureteral , Animales , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Fibrosis , Células HEK293 , Humanos , Riñón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Insuficiencia Renal Crónica/complicaciones , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo
19.
Am J Nephrol ; 53(8-9): 646-651, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36349783

RESUMEN

BACKGROUND: Patients with chronic kidney disease (CKD) have dysbiosis, dysmetabolism, and immune dysregulation. Gut microbiome plays an important role shaping the immune system which is an important modulator of CKD progression. METHODS: We compared the effect of a diet low in protein and high in fiber (LP-HF; n = 7) to that of diet rich in protein, but low in fiber (HP-LF; n = 7) on gut microbiome and T-cell commitment in male CKD (Alb/TGF-ß1) mice. The gut microbiomes of these mice were subjected to 16S rRNA taxonomic profiling at baseline, 6 weeks and 12 weeks of the study. RESULTS: The LP-HF diet was associated with an increase in Butyricicoccus pullicaecorum BT, a taxon whose functions include those closely related to butyric acid synthesis (Kendall's W statistic = 180 in analysis of microbiome composition). HP-LF diet was associated with increased abundance of two predominantly proteolytic bacterial strains related to Parabacteroides distasonis (W statistic = 173), Mucispirillum schaedleri, and Bacteroides dorei (W statistic = 192). Pathway analysis suggested that the LP-HF diet induced carbohydrate, lipid, and butyrate metabolism. As compared with HP-LF mice, LP-HF mice had 1.7-fold increase in CD4+Foxp3+Treg cells in spleen and 2.4-fold increase of these cells in peripheral blood. There was an 87% decrease in percentage of CD4+ Th17 + cells in spleen and an 85% decrease in peripheral blood, respectively, in LP-HF mice compared to the HP-LF mice. CONCLUSION: The LP-HF diet promotes the proliferation of saccharolytic bacteria and favors T-cell commitment toward Treg cells in a CKD mouse of model. Clinical significance of the finding needs to be further investigated.


Asunto(s)
Microbioma Gastrointestinal , Insuficiencia Renal Crónica , Ratones , Masculino , Animales , Linfocitos T Reguladores , ARN Ribosómico 16S/genética , Fibras de la Dieta/farmacología , Proteínas en la Dieta/farmacología , Ratones Endogámicos C57BL
20.
Am J Nephrol ; 53(2-3): 182-190, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35100591

RESUMEN

INTRODUCTION: The association of apolipoprotein L1 (APOL1) nephropathy risk variants (APOL1), unique to African-ancestry (African-American [AA]) populations, with systemic inflammation, a contributor to chronic kidney disease (CKD) and end-stage kidney disease (ESKD) is ill-defined. This study aimed to describe the role of inflammatory markers in the relationship between APOL1 and incident kidney outcomes using a prospective cohort study. METHODS: APOL1 high-risk status under a recessive genetic model was studied in 10,605 AA adults aged ≥45 years from the Reasons for Geographic and Racial Differences in Stroke study. The primary variables of interest were inflammatory markers: C-reactive protein (mg/dL), white blood cell count (cells/mm3), and serum albumin (sALB) (mg/dL). High inflammation status was defined if at least one of these inflammatory markers exceeded clinical threshold. The association between APOL1 and biomarkers were assessed using regression models adjusting for age, sex, ancestry, hypertension, lipid medications, albumin-to-creatinine ratio, and estimated glomerular filtration rate (eGFR). Models were stratified by diabetes status. We identified incident ESKD using USRDS linkage, and we defined incident CKD as an eGFR <60 mL/min/1.73 m2 and ≥25% decline in the eGFR and normal baseline eGFR and tested for mediation of APOL1 and outcomes by biomarkers using the causal inference approach. RESULTS: Among 7,151 participants with data available on all inflammation markers, 4,479 participants had ≥1 marker meeting the clinical threshold. APOL1 high-risk status was associated with lower adjusted odds of reduced sALB {odds ratio (OR) (95% confidence interval [CI]): 0.59 [0.36, 0.96])}, and this association was significant in people with diabetes (OR [95% CI]: 0.40 [0.18, 0.89]) but not in those without diabetes. There was no association of APOL1 high-risk status with other markers or high inflammation status. APOL1 was independently associated with ESKD (OR [95% CI] = 1.78 [1.28, 2.48]) and CKD (OR [95% CI] = 1.38 [1.00, 1.91]). On mediation analysis, the direct effect between APOL1 and ESKD strengthened after accounting for sALB, but the estimated mediated effect was not statistically significant (OR [95% CI]: 0.98 [0.92, 1.05], p = 0.58). CONCLUSION: APOL1 high-risk variants were associated with sALB. However, sALB did not statistically mediate the association between APOL1 and incident ESKD.


Asunto(s)
Apolipoproteína L1 , Insuficiencia Renal Crónica , Adulto , Apolipoproteína L1/genética , Estudios de Cohortes , Tasa de Filtración Glomerular , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética , Factores de Riesgo , Albúmina Sérica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA