Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 29(21): 3465-3476, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33001180

RESUMEN

Neonatal dried blood spots (NDBS) are a widely banked sample source that enables retrospective investigation into early life molecular events. Here, we performed low-pass whole genome bisulfite sequencing (WGBS) of 86 NDBS DNA to examine early life Down syndrome (DS) DNA methylation profiles. DS represents an example of genetics shaping epigenetics, as multiple array-based studies have demonstrated that trisomy 21 is characterized by genome-wide alterations to DNA methylation. By assaying over 24 million CpG sites, thousands of genome-wide significant (q < 0.05) differentially methylated regions (DMRs) that distinguished DS from typical development and idiopathic developmental delay were identified. Machine learning feature selection refined these DMRs to 22 loci. The DS DMRs mapped to genes involved in neurodevelopment, metabolism, and transcriptional regulation. Based on comparisons with previous DS methylation studies and reference epigenomes, the hypermethylated DS DMRs were significantly (q < 0.05) enriched across tissues while the hypomethylated DS DMRs were significantly (q < 0.05) enriched for blood-specific chromatin states. A ~28 kb block of hypermethylation was observed on chromosome 21 in the RUNX1 locus, which encodes a hematopoietic transcription factor whose binding motif was the most significantly enriched (q < 0.05) overall and specifically within the hypomethylated DMRs. Finally, we also identified DMRs that distinguished DS NDBS based on the presence or absence of congenital heart disease (CHD). Together, these results not only demonstrate the utility of low-pass WGBS on NDBS samples for epigenome-wide association studies, but also provide new insights into the early life mechanisms of epigenomic dysregulation resulting from trisomy 21.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Metilación de ADN , Síndrome de Down/diagnóstico , Pruebas con Sangre Seca/métodos , Epigénesis Genética , Genoma Humano , Sulfitos/química , Biomarcadores/sangre , Estudios de Casos y Controles , Islas de CpG , Síndrome de Down/genética , Femenino , Estudios de Seguimiento , Regulación de la Expresión Génica , Humanos , Recién Nacido , Masculino , Pronóstico , Estudios Retrospectivos , Secuenciación Completa del Genoma
2.
Mamm Genome ; 33(1): 203-212, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34313795

RESUMEN

The Mutant Mouse Resource and Research Center (MMRRC) Program is the pre-eminent public national mutant mouse repository and distribution archive in the USA, serving as a national resource of mutant mice available to the global scientific community for biomedical research. Established more than two decades ago with grants from the National Institutes of Health (NIH), the MMRRC Program supports a Consortium of regionally distributed and dedicated vivaria, laboratories, and offices (Centers) and an Informatics Coordination and Service Center (ICSC) at three academic teaching and research universities and one non-profit genetic research institution. The MMRRC Program accepts the submission of unique, scientifically rigorous, and experimentally valuable genetically altered and other mouse models donated by academic and commercial scientists and organizations for deposition, maintenance, preservation, and dissemination to scientists upon request. The four Centers maintain an archive of nearly 60,000 mutant alleles as live mice, frozen germplasm, and/or embryonic stem (ES) cells. Since its inception, the Centers have fulfilled 13,184 orders for mutant mouse models from 9591 scientists at 6626 institutions around the globe. Centers also provide numerous services that facilitate using mutant mouse models obtained from the MMRRC, including genetic assays, microbiome analysis, analytical phenotyping and pathology, cryorecovery, mouse husbandry, infectious disease surveillance and diagnosis, and disease modeling. The ICSC coordinates activities between the Centers, manages the website (mmrrc.org) and online catalog, and conducts communication, outreach, and education to the research community. Centers preserve, secure, and protect mutant mouse lines in perpetuity, promote rigor and reproducibility in scientific experiments using mice, provide experiential training and consultation in the responsible use of mice in research, and pursue cutting edge technologies to advance biomedical studies using mice to improve human health. Researchers benefit from an expansive list of well-defined mouse models of disease that meet the highest standards of rigor and reproducibility, while donating investigators benefit by having their mouse lines preserved, protected, and distributed in compliance with NIH policies.


Asunto(s)
Investigación Biomédica , Modelos Animales de Enfermedad , Ratones , National Institutes of Health (U.S.) , Animales , Humanos , Ratones/genética , Reproducibilidad de los Resultados , Estados Unidos
3.
BMC Bioinformatics ; 21(1): 74, 2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-32093654

RESUMEN

BACKGROUND: Shotgun metagenomes are often assembled prior to annotation of genes which biases the functional capacity of a community towards its most abundant members. For an unbiased assessment of community function, short reads need to be mapped directly to a gene or protein database. The ability to detect genes in short read sequences is dependent on pre- and post-sequencing decisions. The objective of the current study was to determine how library size selection, read length and format, protein database, e-value threshold, and sequencing depth impact gene-centric analysis of human fecal microbiomes when using DIAMOND, an alignment tool that is up to 20,000 times faster than BLASTX. RESULTS: Using metagenomes simulated from a database of experimentally verified protein sequences, we find that read length, e-value threshold, and the choice of protein database dramatically impact detection of a known target, with best performance achieved with longer reads, stricter e-value thresholds, and a custom database. Using publicly available metagenomes, we evaluated library size selection, paired end read strategy, and sequencing depth. Longer read lengths were acheivable by merging paired ends when the sequencing library was size-selected to enable overlaps. When paired ends could not be merged, a congruent strategy in which both ends are independently mapped was acceptable. Sequencing depths of 5 million merged reads minimized the error of abundance estimates of specific target genes, including an antimicrobial resistance gene. CONCLUSIONS: Shotgun metagenomes of DNA extracted from human fecal samples sequenced using the Illumina platform should be size-selected to enable merging of paired end reads and should be sequenced in the PE150 format with a minimum sequencing depth of 5 million merge-able reads to enable detection of specific target genes. Expecting the merged reads to be 180-250 bp in length, the appropriate e-value threshold for DIAMOND would then need to be more strict than the default. Accurate and interpretable results for specific hypotheses will be best obtained using small databases customized for the research question.


Asunto(s)
Metagenómica/métodos , Análisis de Secuencia de ADN/métodos , Bases de Datos de Proteínas , Heces/microbiología , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Metagenoma , Análisis de Secuencia de Proteína
4.
BMC Genomics ; 21(1): 698, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33028202

RESUMEN

BACKGROUND: Although considerable progress has been made towards annotating the noncoding portion of the human and mouse genomes, regulatory elements in other species, such as livestock, remain poorly characterized. This lack of functional annotation poses a substantial roadblock to agricultural research and diminishes the value of these species as model organisms. As active regulatory elements are typically characterized by chromatin accessibility, we implemented the Assay for Transposase Accessible Chromatin (ATAC-seq) to annotate and characterize regulatory elements in pigs and cattle, given a set of eight adult tissues. RESULTS: Overall, 306,304 and 273,594 active regulatory elements were identified in pig and cattle, respectively. 71,478 porcine and 47,454 bovine regulatory elements were highly tissue-specific and were correspondingly enriched for binding motifs of known tissue-specific transcription factors. However, in every tissue the most prevalent accessible motif corresponded to the insulator CTCF, suggesting pervasive involvement in 3-D chromatin organization. Taking advantage of a similar dataset in mouse, open chromatin in pig, cattle, and mice were compared, revealing that the conservation of regulatory elements, in terms of sequence identity and accessibility, was consistent with evolutionary distance; whereas pig and cattle shared about 20% of accessible sites, mice and ungulates only had about 10% of accessible sites in common. Furthermore, conservation of accessibility was more prevalent at promoters than at intergenic regions. CONCLUSIONS: The lack of conserved accessibility at distal elements is consistent with rapid evolution of enhancers, and further emphasizes the need to annotate regulatory elements in individual species, rather than inferring elements based on homology. This atlas of chromatin accessibility in cattle and pig constitutes a substantial step towards annotating livestock genomes and dissecting the regulatory link between genome and phenome.


Asunto(s)
Bovinos , Cromatina , Genoma , Ratones , Anotación de Secuencia Molecular , Animales , Bovinos/genética , Cromatina/genética , Secuenciación de Inmunoprecipitación de Cromatina , Masculino , Ratones/genética , Regiones Promotoras Genéticas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Porcinos/genética
5.
Mol Cell ; 45(6): 814-25, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22387027

RESUMEN

CpG islands (CGIs) function as promoters for approximately 60% of human genes. Most of these elements remain protected from CpG methylation, a prevalent epigenetic modification associated with transcriptional silencing. Here, we report that methylation-resistant CGI promoters are characterized by significant strand asymmetry in the distribution of guanines and cytosines (GC skew) immediately downstream from their transcription start sites. Using innovative genomics methodologies, we show that transcription through regions of GC skew leads to the formation of long R loop structures. Furthermore, we show that GC skew and R loop formation potential is correlated with and predictive of the unmethylated state of CGIs. Finally, we provide evidence that R loop formation protects from DNMT3B1, the primary de novo DNA methyltransferase in early development. Altogether, these results suggest that protection from DNA methylation is a built-in characteristic of the DNA sequence of CGI promoters that is revealed by the cotranscriptional formation of R loop structures.


Asunto(s)
Islas de CpG , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Animales , Apolipoproteínas E/genética , Citosina , Metilación de ADN , Epigénesis Genética , Genoma Humano , Guanina , Humanos , Ratones , Plásmidos/genética , Sitio de Iniciación de la Transcripción , Proteínas Nucleares snRNP/genética
6.
BMC Bioinformatics ; 19(1): 175, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29783945

RESUMEN

BACKGROUND: Complex microbial communities are an area of growing interest in biology. Metatranscriptomics allows researchers to quantify microbial gene expression in an environmental sample via high-throughput sequencing. Metatranscriptomic experiments are computationally intensive because the experiments generate a large volume of sequence data and each sequence must be compared with reference sequences from thousands of organisms. RESULTS: SAMSA2 is an upgrade to the original Simple Annotation of Metatranscriptomes by Sequence Analysis (SAMSA) pipeline that has been redesigned for standalone use on a supercomputing cluster. SAMSA2 is faster due to the use of the DIAMOND aligner, and more flexible and reproducible because it uses local databases. SAMSA2 is available with detailed documentation, and example input and output files along with examples of master scripts for full pipeline execution. CONCLUSIONS: SAMSA2 is a rapid and efficient metatranscriptome pipeline for analyzing large RNA-seq datasets in a supercomputing cluster environment. SAMSA2 provides simplified output that can be examined directly or used for further analyses, and its reference databases may be upgraded, altered or customized to fit the needs of any experiment.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenómica/métodos , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Microbiota/genética
7.
BMC Genomics ; 19(1): 684, 2018 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-30227846

RESUMEN

BACKGROUND: Numerous long non-coding RNAs (lncRNAs) have been identified and their roles in gene regulation in humans, mice, and other model organisms studied; however, far less research has been focused on lncRNAs in farm animal species. While previous studies in chickens, cattle, and pigs identified lncRNAs in specific developmental stages or differentially expressed under specific conditions in a limited number of tissues, more comprehensive identification of lncRNAs in these species is needed. The goal of the FAANG Consortium (Functional Annotation of Animal Genomes) is to functionally annotate animal genomes, including the annotation of lncRNAs. As one of the FAANG pilot projects, lncRNAs were identified across eight tissues in two adult male biological replicates from chickens, cattle, and pigs. RESULTS: Comprehensive lncRNA annotations for the chicken, cattle, and pig genomes were generated by utilizing RNA-seq from eight tissue types from two biological replicates per species at the adult developmental stage. A total of 9393 lncRNAs in chickens, 7235 lncRNAs in cattle, and 14,429 lncRNAs in pigs were identified. Including novel isoforms and lncRNAs from novel loci, 5288 novel lncRNAs were identified in chickens, 3732 in cattle, and 4870 in pigs. These transcripts match previously known patterns of lncRNAs, such as generally lower expression levels than mRNAs and higher tissue specificity. An analysis of lncRNA conservation across species identified a set of conserved lncRNAs with potential functions associated with chromatin structure and gene regulation. Tissue-specific lncRNAs were identified. Genes proximal to tissue-specific lncRNAs were enriched for GO terms associated with the tissue of origin, such as leukocyte activation in spleen. CONCLUSIONS: LncRNAs were identified in three important farm animal species using eight tissues from adult individuals. About half of the identified lncRNAs were not previously reported in the NCBI annotations for these species. While lncRNAs are less conserved than protein-coding genes, a set of positionally conserved lncRNAs were identified among chickens, cattle, and pigs with potential functions related to chromatin structure and gene regulation. Tissue-specific lncRNAs have potential regulatory functions on genes enriched for tissue-specific GO terms. Future work will include epigenetic data from ChIP-seq experiments to further refine these annotations.


Asunto(s)
Bovinos/genética , Pollos/genética , Genoma , Especificidad de Órganos , ARN Largo no Codificante/genética , Porcinos/genética , Animales , Animales Domésticos/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Anotación de Secuencia Molecular
8.
Stem Cells ; 35(4): 981-988, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28032673

RESUMEN

Early embryonic stages of pluripotency are modeled for epigenomic studies primarily with human embryonic stem cells (ESC) or induced pluripotent stem cells (iPSCs). For analysis of DNA methylation however, ESCs and iPSCs do not accurately reflect the DNA methylation levels found in preimplantation embryos. Whole genome bisulfite sequencing (WGBS) approaches have revealed the presence of large partially methylated domains (PMDs) covering 30%-40% of the genome in oocytes, preimplantation embryos, and placenta. In contrast, ESCs and iPSCs show abnormally high levels of DNA methylation compared to inner cell mass (ICM) or placenta. Here we show that dental pulp stem cells (DPSCs), derived from baby teeth and cultured in serum-containing media, have PMDs and mimic the ICM and placental methylome more closely than iPSCs and ESCs. By principal component analysis, DPSC methylation patterns were more similar to two other neural stem cell types of human derivation (EPI-NCSC and LUHMES) and placenta than were iPSCs, ESCs or other human cell lines (SH-SY5Y, B lymphoblast, IMR90). To test the suitability of DPSCs in modeling epigenetic differences associated with disease, we compared methylation patterns of DPSCs derived from children with chromosome 15q11.2-q13.3 maternal duplication (Dup15q) to controls. Differential methylation region (DMR) analyses revealed the expected Dup15q hypermethylation at the imprinting control region, as well as hypomethylation over SNORD116, and novel DMRs over 147 genes, including several autism candidate genes. Together these data suggest that DPSCs are a useful model for epigenomic and functional studies of human neurodevelopmental disorders. Stem Cells 2017;35:981-988.


Asunto(s)
Metilación de ADN/genética , Pulpa Dental/citología , Impresión Genómica , Células Madre/citología , Células Madre/metabolismo , Línea Celular , Duplicación Cromosómica , Femenino , Genoma Humano , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Placenta/metabolismo , Embarazo , Síndrome
9.
Nucleic Acids Res ; 43(20): 9729-41, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26253743

RESUMEN

GC skew is a measure of the strand asymmetry in the distribution of guanines and cytosines. GC skew favors R-loops, a type of three stranded nucleic acid structures that form upon annealing of an RNA strand to one strand of DNA, creating a persistent RNA:DNA hybrid. Previous studies show that GC skew is prevalent at thousands of human CpG island (CGI) promoters and transcription termination regions, which correspond to hotspots of R-loop formation. Here, we investigated the conservation of GC skew patterns in 60 sequenced chordates genomes. We report that GC skew is a conserved sequence characteristic of the CGI promoter class in vertebrates. Furthermore, we reveal that promoter GC skew peaks at the exon 1/ intron1 junction and that it is highly correlated with gene age and CGI promoter strength. Our data also show that GC skew is predictive of unmethylated CGI promoters in a range of vertebrate species and that it imparts significant DNA hypomethylation for promoters with intermediate CpG densities. Finally, we observed that terminal GC skew is conserved for a subset of vertebrate genes that tend to be located significantly closer to their downstream neighbors, consistent with a role for R-loop formation in transcription termination.


Asunto(s)
Islas de CpG , Regiones Promotoras Genéticas , Vertebrados/genética , Animales , Composición de Base , Secuencia de Bases , Secuencia Conservada , ADN/química , Exones , Genes , Genómica , Humanos , Intrones , Ratones , Regiones Terminadoras Genéticas
10.
BMC Bioinformatics ; 17(1): 399, 2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27687690

RESUMEN

BACKGROUND: Although metatranscriptomics-the study of diverse microbial population activity based on RNA-seq data-is rapidly growing in popularity, there are limited options for biologists to analyze this type of data. Current approaches for processing metatranscriptomes rely on restricted databases and a dedicated computing cluster, or metagenome-based approaches that have not been fully evaluated for processing metatranscriptomic datasets. We created a new bioinformatics pipeline, designed specifically for metatranscriptome dataset analysis, which runs in conjunction with Metagenome-RAST (MG-RAST) servers. Designed for use by researchers with relatively little bioinformatics experience, SAMSA offers a breakdown of metatranscriptome transcription activity levels by organism or transcript function, and is fully open source. We used this new tool to evaluate best practices for sequencing stool metatranscriptomes. RESULTS: Working with the MG-RAST annotation server, we constructed the Simple Annotation of Metatranscriptomes by Sequence Analysis (SAMSA) software package, a complete pipeline for the analysis of gut microbiome data. SAMSA can summarize and evaluate raw annotation results, identifying abundant species and significant functional differences between metatranscriptomes. Using pilot data and simulated subsets, we determined experimental requirements for fecal gut metatranscriptomes. Sequences need to be either long reads (longer than 100 bp) or joined paired-end reads. Each sample needs 40-50 million raw sequences, which can be expected to yield the 5-10 million annotated reads necessary for accurate abundance measures. We also demonstrated that ribosomal RNA depletion does not equally deplete ribosomes from all species within a sample, and remaining rRNA sequences should be discarded. Using publicly available metatranscriptome data in which rRNA was not depleted, we were able to demonstrate that overall organism transcriptional activity can be measured using mRNA counts. We were also able to detect significant differences between control and experimental groups in both organism transcriptional activity and specific cellular functions. CONCLUSIONS: By making this new pipeline publicly available, we have created a powerful new tool for metatranscriptomics research, offering a new method for greater insight into the activity of diverse microbial communities. We further recommend that stool metatranscriptomes be ribodepleted and sequenced in a 100 bp paired end format with a minimum of 40 million reads per sample.

11.
Plant Mol Biol ; 92(3): 337-46, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27492360

RESUMEN

KEY MESSAGE: Related motifs strongly increase gene expression when added to an intron located in coding sequences. Many introns greatly increase gene expression through a mechanism that remains elusive. An obstacle to understanding intron-mediated enhancement (IME) has been the difficulty of locating the specific intron sequences responsible for boosting expression because they are redundant, dispersed, and degenerate. Previously we used the IMEter algorithm in two independent ways to identify two motifs (CGATT and TTNGATYTG) that are candidates for involvement in IME in Arabidopsis. Here we show that both motifs are sufficient to increase expression. An intron that has little influence on expression was converted into one that increased mRNA accumulation 24-fold and reporter enzyme activity 40-fold relative to the intronless control by introducing 11 copies of the more active TTNGATYTG motif. This degree of stimulation is twice as large as that of the strongest of 15 natural introns previously tested in the same reporter gene. Even though the CGATT and TTNGATYTG motifs each increased expression, and CGATT matches the NGATY core of the longer motif, combining the motifs to make TTCGATTTG reduced the stimulating ability of the TTNGATYTG motif. Additional substitutions were used to test the contribution to IME of other residues in the TTNGATYTG motif. The verification that these motifs are active in IME will improve our ability to predict the stimulating ability of introns, to engineer any intron to increase expression to a desired level, and to explore the mechanism of IME by seeking factors that might interact with these sequences.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Intrones/genética , Proteínas de Arabidopsis/genética
12.
Genome Res ; 23(10): 1590-600, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23868195

RESUMEN

Strand asymmetry in the distribution of guanines and cytosines, measured by GC skew, predisposes DNA sequences toward R-loop formation upon transcription. Previous work revealed that GC skew and R-loop formation associate with a core set of unmethylated CpG island (CGI) promoters in the human genome. Here, we show that GC skew can distinguish four classes of promoters, including three types of CGI promoters, each associated with unique epigenetic and gene ontology signatures. In particular, we identify a strong and a weak class of CGI promoters and show that these loci are enriched in distinct chromosomal territories reflecting the intrinsic strength of their protection against DNA methylation. Interestingly, we show that strong CGI promoters are depleted from the X chromosome while weak CGIs are enriched, a property consistent with the acquisition of DNA methylation during dosage compensation. Furthermore, we identify a third class of CGI promoters based on its unique GC skew profile and show that this gene set is enriched for Polycomb group targets. Lastly, we show that nearly 2000 genes harbor GC skew at their 3' ends and that these genes are preferentially located in gene-dense regions and tend to be closely arranged. Genomic profiling of R-loops accordingly showed that a large proportion of genes with terminal GC skew form R-loops at their 3' ends, consistent with a role for these structures in permitting efficient transcription termination. Altogether, we show that GC skew and R-loop formation offer significant insights into the epigenetic regulation, genomic organization, and function of human genes.


Asunto(s)
Cromosomas Humanos X/genética , Islas de CpG , ADN/química , Epigénesis Genética , Genoma Humano , Terminación de la Transcripción Genética , Células Cultivadas , Cromosomas Humanos/genética , Metilación de ADN , Compensación de Dosificación (Genética) , Epigénesis Genética/genética , Dosificación de Gen , Perfilación de la Expresión Génica , Ontología de Genes , Histonas/genética , Histonas/metabolismo , Humanos , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas
13.
Proc Natl Acad Sci U S A ; 110(15): 6037-42, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23530188

RESUMEN

Tissue-specific DNA methylation is found at promoters, enhancers, and CpG islands but also over larger genomic regions. In most human tissues, the vast majority of the genome is highly methylated (>70%). Recently, sequencing of bisulfite-treated DNA (MethylC-seq) has revealed large partially methylated domains (PMDs) in some human cell lines. PMDs cover up to 40% of the genome and are associated with gene repression and inactive chromatin marks. However, to date, only cultured cells and cancers have shown evidence for PMDs. Here, we performed MethylC-seq in full-term human placenta and demonstrate it is the first known normal tissue showing clear evidence of PMDs. We found that PMDs cover 37% of the placental genome, are stable throughout gestation and between individuals, and can be observed with lower sensitivity in Illumina 450K Infinium data. RNA-seq analysis confirmed that genes in PMDs are repressed in placenta. Using a hidden Markov model to map placental PMDs genome-wide and compare them to PMDs in other cell lines, we found that genes within placental PMDs have tissue-specific functions. For regulatory regions, methylation levels in promoter CpG islands are actually higher for genes within placental PMDs, despite the lower overall methylation of surrounding regions. Similar to PMDs, polycomb-regulated regions are hypomethylated but smaller and distinct from PMDs, with some being hypermethylated in placenta compared with other tissues. These results suggest that PMDs are a developmentally dynamic feature of the methylome that are relevant for understanding both normal development and cancer and may be of use as epigenetic biomarkers.


Asunto(s)
Metilación de ADN , Placenta/metabolismo , Biomarcadores , Niño , Preescolar , Cromatina/química , Islas de CpG , Epigénesis Genética , Femenino , Genoma Humano , Humanos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo , Análisis de Secuencia de ARN , Sulfitos
14.
J Proteome Res ; 14(5): 2143-57, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25757574

RESUMEN

Milk has been well established as the optimal nutrition source for infants, yet there is still much to be understood about its molecular composition. Therefore, our objective was to develop and compare comprehensive milk proteomes for human and rhesus macaques to highlight differences in neonatal nutrition. We developed a milk proteomics technique that overcomes previous technical barriers including pervasive post-translational modifications and limited sample volume. We identified 1606 and 518 proteins in human and macaque milk, respectively. During analysis of detected protein orthologs, we identified 88 differentially abundant proteins. Of these, 93% exhibited increased abundance in human milk relative to macaque and include lactoferrin, polymeric immunoglobulin receptor, alpha-1 antichymotrypsin, vitamin D-binding protein, and haptocorrin. Furthermore, proteins more abundant in human milk compared with macaque are associated with development of the gastrointestinal tract, the immune system, and the brain. Overall, our novel proteomics method reveals the first comprehensive macaque milk proteome and 524 newly identified human milk proteins. The differentially abundant proteins observed are consistent with the perspective that human infants, compared with nonhuman primates, are born at a slightly earlier stage of somatic development and require additional support through higher quantities of specific proteins to nurture human infant maturation.


Asunto(s)
Lactancia/fisiología , Leche Humana/química , Anotación de Secuencia Molecular , Proteoma/aislamiento & purificación , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Desarrollo Infantil/fisiología , Cromatografía Liquida , Femenino , Tracto Gastrointestinal/crecimiento & desarrollo , Tracto Gastrointestinal/metabolismo , Humanos , Sistema Inmunológico/crecimiento & desarrollo , Sistema Inmunológico/metabolismo , Lactante , Lactoferrina/aislamiento & purificación , Lactoferrina/metabolismo , Macaca mulatta/crecimiento & desarrollo , Macaca mulatta/metabolismo , Leche Humana/metabolismo , Proteoma/metabolismo , Receptores de Inmunoglobulina Polimérica/aislamiento & purificación , Receptores de Inmunoglobulina Polimérica/metabolismo , Especificidad de la Especie , Espectrometría de Masas en Tándem , Transcobalaminas/aislamiento & purificación , Transcobalaminas/metabolismo , Proteína de Unión a Vitamina D/aislamiento & purificación , Proteína de Unión a Vitamina D/metabolismo , alfa 1-Antiquimotripsina/aislamiento & purificación , alfa 1-Antiquimotripsina/metabolismo
15.
J Virol ; 88(11): 6268-80, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24672033

RESUMEN

UNLABELLED: Epithelial barrier dysfunction during human immunodeficiency virus (HIV) infection has largely been attributed to the rapid and severe depletion of CD4(+) T cells in the gastrointestinal (GI) tract. Although it is known that changes in mucosal gene expression contribute to intestinal enteropathy, the role of small noncoding RNAs, specifically microRNA (miRNA), has not been investigated. Using the simian immunodeficiency virus (SIV)-infected nonhuman primate model of HIV pathogenesis, we investigated the effect of viral infection on miRNA expression in intestinal mucosa. SIV infection led to a striking decrease in the expression of mucosal miRNA compared to that in uninfected controls. This decrease coincided with an increase in 5'-3'-exoribonuclease 2 protein and alterations in DICER1 and Argonaute 2 expression. Targets of depleted miRNA belonged to molecular pathways involved in epithelial proliferation, differentiation, and immune response. Decreased expression of several miRNA involved in maintaining epithelial homeostasis in the gut was localized to the proliferative crypt region of the intestinal epithelium. Our findings suggest that SIV-induced decreased expression of miRNA involved in epithelial homeostasis, disrupted expression of miRNA biogenesis machinery, and increased expression of XRN2 are involved in the development of epithelial barrier dysfunction and gastroenteropathy. IMPORTANCE: MicroRNA (miRNA) regulate the development and function of intestinal epithelial cells, and many viruses disrupt normal host miRNA expression. In this study, we demonstrate that SIV and HIV disrupt expression of miRNA in the small intestine during infection. The depletion of several key miRNA is localized to the proliferative crypt region of the gut epithelium. These miRNA are known to control expression of genes involved in inflammation, cell death, and epithelial maturation. Our data indicate that this disruption might be caused by altered expression of miRNA biogenesis machinery during infection. These findings suggest that the disruption of miRNA in the small intestine likely plays a role in intestinal enteropathy during HIV infection.


Asunto(s)
VIH , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiopatología , Infecciones por Lentivirus/metabolismo , MicroARNs/metabolismo , Virus de la Inmunodeficiencia de los Simios , Adulto , Animales , Secuencia de Bases , Linfocitos T CD4-Positivos/inmunología , Biología Computacional , Densitometría , Citometría de Flujo , Humanos , Mucosa Intestinal/inmunología , Captura por Microdisección con Láser , Infecciones por Lentivirus/fisiopatología , Macaca mulatta , Masculino , Análisis por Micromatrices , Persona de Mediana Edad , Datos de Secuencia Molecular , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Carga Viral
16.
Bioinformatics ; 30(11): 1625-6, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24489371

RESUMEN

UNLABELLED: Hidden Markov models (HMMs) are probabilistic models that are well-suited to solve many different classification problems in computation biology. StochHMM provides a command-line program and C++ library that can implement a traditional HMM from a simple text file. StochHMM provides researchers the flexibility to create higher-order emissions, integrate additional data sources and/or user-defined functions into multiple points within the HMM framework. Additional features include user-defined alphabets, ability to handle ambiguous characters in an emission-dependent manner, user-defined weighting of state paths and ability to tie transition probabilities to sequence. AVAILABILITY AND IMPLEMENTATION: StochHMM is implemented in C++ and is available under the MIT License. Software, source code, documentation and examples can be found at http://github.com/KorfLab/StochHMM.


Asunto(s)
Análisis de Secuencia/métodos , Programas Informáticos , Algoritmos , Cadenas de Markov , Modelos Estadísticos
17.
Genome Res ; 21(10): 1583-91, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21784875

RESUMEN

DNA methylation is essential for embryonic and neuronal differentiation, but the function of most genomic DNA methylation marks is poorly understood. Generally the human genome is highly methylated (>70%) except for CpG islands and gene promoters. However, it was recently shown that the IMR90 human fetal lung fibroblast cells have large regions of the genome with partially methylated domains (PMDs, <70% average methylation), in contrast to the rest of the genome which is in highly methylated domains (HMDs, >70% average methylation). Using bisulfite conversion followed by high-throughput sequencing (MethylC-seq), we discovered that human SH-SY5Y neuronal cells also contain PMDs. We developed a novel hidden Markov model (HMM) to computationally map the genomic locations of PMDs in both cell types and found that autosomal PMDs can be >9 Mb in length and cover 41% of the IMR90 genome and 19% of the SH-SY5Y genome. Genomic regions marked by cell line specific PMDs contain genes that are expressed in a tissue-specific manner, with PMDs being a mark of repressed transcription. Genes contained within N-HMDs (neuronal HMDs, defined as a PMD in IMR90 but HMD in SH-SY5Y) were significantly enriched for calcium signaling, synaptic transmission, and neuron differentiation functions. Autism candidate genes were enriched within PMDs and the largest PMD observed in SH-SY5Y cells marked a 10 Mb cluster of cadherin genes with strong genetic association to autism. Our results suggest that these large-scale methylation domain maps could be relevant to interpreting and directing future investigations into the elusive etiology of autism.


Asunto(s)
Metilación de ADN , Regulación del Desarrollo de la Expresión Génica , Trastorno Autístico/genética , Cadherinas/genética , Línea Celular , Corteza Cerebral/metabolismo , Mapeo Cromosómico , Cromosomas Humanos Par 5 , Epigénesis Genética , Sitios Genéticos , Humanos , Lactante , Masculino , Cadenas de Markov , Neuronas/metabolismo , Análisis de Secuencia de ADN
18.
J Virol ; 87(5): 2908-22, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23269803

RESUMEN

Three alloherpesviruses are known to cause disease in cyprinid fish: cyprinid herpesviruses 1 and 3 (CyHV1 and CyHV3) in common carp and koi and cyprinid herpesvirus 2 (CyHV2) in goldfish. We have determined the genome sequences of CyHV1 and CyHV2 and compared them with the published CyHV3 sequence. The CyHV1 and CyHV2 genomes are 291,144 and 290,304 bp, respectively, in size, and thus the CyHV3 genome, at 295,146 bp, remains the largest recorded among the herpesviruses. Each of the three genomes consists of a unique region flanked at each terminus by a sizeable direct repeat. The CyHV1, CyHV2, and CyHV3 genomes are predicted to contain 137, 150, and 155 unique, functional protein-coding genes, respectively, of which six, four, and eight, respectively, are duplicated in the terminal repeat. The three viruses share 120 orthologous genes in a largely colinear arrangement, of which up to 55 are also conserved in the other member of the genus Cyprinivirus, anguillid herpesvirus 1. Twelve genes are conserved convincingly in all sequenced alloherpesviruses, and two others are conserved marginally. The reference CyHV3 strain has been reported to contain five fragmented genes that are presumably nonfunctional. The CyHV2 strain has two fragmented genes, and the CyHV1 strain has none. CyHV1, CyHV2, and CyHV3 have five, six, and five families of paralogous genes, respectively. One family unique to CyHV1 is related to cellular JUNB, which encodes a transcription factor involved in oncogenesis. To our knowledge, this is the first time that JUNB-related sequences have been reported in a herpesvirus.


Asunto(s)
Carpas/virología , Enfermedades de los Peces/virología , Genoma Viral , Herpesviridae/clasificación , Herpesviridae/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN Viral , Genómica , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/virología , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Alineación de Secuencia , Análisis de Secuencia de ADN , Proteínas Virales/química
20.
bioRxiv ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38798575

RESUMEN

Dominant X-linked diseases are uncommon due to female X chromosome inactivation (XCI). While random XCI usually protects females against X-linked mutations, Rett syndrome (RTT) is a female neurodevelopmental disorder caused by heterozygous MECP2 mutation. After 6-18 months of typical neurodevelopment, RTT girls undergo poorly understood regression. We performed longitudinal snRNA-seq on cerebral cortex in a construct-relevant Mecp2e1 mutant mouse model of RTT, revealing transcriptional effects of cell type, mosaicism, and sex on progressive disease phenotypes. Across cell types, we observed sex differences in the number of differentially expressed genes (DEGs) with 6x more DEGs in mutant females than males. Unlike males, female DEGs emerged prior to symptoms, were enriched for homeostatic gene pathways in distinct cell types over time, and correlated with disease phenotypes and human RTT cortical cell transcriptomes. Non-cell-autonomous effects were prominent and dynamic across disease progression of Mecp2e1 mutant females, indicating wild-type-expressing cells normalizing transcriptional homeostasis. These results improve understanding of RTT progression and treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA