Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 23(34): 8315-8319, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28423212

RESUMEN

UV-irradiation of a self-assembled benzophenone bis-urea macrocycle generates µm amounts of radicals that persist for weeks under ambient conditions. High-field EPR and variable-temperature X-band EPR studies suggest a resonance stabilized radical pair through H-abstraction. These endogenous radicals were applied as a polarizing agent for magic angle spinning (MAS) dynamic nuclear polarization (DNP) NMR enhancement. The field-stepped DNP enhancement profile exhibits a sharp peak with a maximum enhancement of ϵon/off =4 superimposed on a nearly constant DNP enhancement of ϵon/off =2 over a broad field range. This maximum coincides with the high field EPR absorption spectrum, consistent with an Overhauser effect mechanism. DNP enhancement was observed for both the host and guests, suggesting that even low levels of endogenous radicals can facilitate the study of host-guest relationships in the solid-state.

2.
Acc Chem Res ; 47(7): 2116-27, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24784767

RESUMEN

CONSPECTUS: This Account highlights the work from our laboratories on bis-urea macrocycles constructed from two C-shaped spacers and two urea groups. These simple molecular units assembled with high fidelity into columnar structures guided by the three-centered urea hydrogen bonding motif and aryl stacking interactions. Individual columns are aligned and closely packed together to afford functional and homogeneous microporous crystals. This approach allows for precise and rational control over the dimensions of the columnar structure simply by changing the small molecular unit. When the macrocyclic unit lacks a cavity, columnar assembly gives strong pillars. Strong pillars with external functional groups such as basic lone pairs can expand like clays to accept guests between the pillars. Macrocycles that contain sizable interior cavities assemble into porous molecular crystals with aligned, well-defined columnar pores that are accessible to gases and guests. Herein, we examine the optimal design of the macrocyclic unit that leads to columnar assembly in high fidelity and probe the feasibility of incorporating a second functional group within the macrocycles. The porous molecular crystals prepared through the self-assembly of bis-urea macrocycles display surface areas similar to zeolites but lower than MOFs. Their simple one-dimensional channels are well-suited for studying binding, investigating transport, diffusion and exchange, and monitoring the effects of encapsulation on reaction mechanism and product distribution. Guests that complement the size, shape, and polarity of the channels can be absorbed into these porous crystals with repeatable stoichiometry to form solid host-guest complexes. Heating or extraction with an organic solvent enables desorption or removal of the guest and subsequent recovery of the solid host. Further, these porous crystals can be used as containers for the selective [2 + 2] cycloadditions of small enones such as 2-cyclohexenone or 3-methyl-cyclopentenone, while larger hosts bind and facilitate the photodimerization of coumarin. When the host framework incorporates benzophenone, a triplet sensitizer, UV-irradiation in the presence of oxygen efficiently generates singlet oxygen. Complexes of this host were employed to influence the selectivity of photooxidations of 2-methyl-2-butene and cumene with singlet oxygen. Small systematic changes in the channel and bound reactants should enable systematic evaluation of the effects of channel dimensions, guest dimensions, and channel-guest interactions on the processes of absorption, diffusion, and reaction of guests within these nanochannels. Such studies could help in the development of new materials for separations, gas storage, and catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA