Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Carcinogenesis ; 42(8): 1110-1118, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34115837

RESUMEN

The protein O6-methylguanine-DNA methyltransferase (MGMT) is able to repair the mutagenic O6-methylguanine (O6-MeG) adduct back to guanine. In this context, it may protect against colorectal cancer formation associated with N-nitroso compounds. Such compounds may be endogenously formed by nitrosylation of amino acids, which can give rise to mutagenic O6-MeG and O6-carboxymethylguanine (O6-CMG) adducts. It is well established that O6-MeG is repaired by MGMT. However, up to now, whether O6-CMG is repaired by this enzyme remains unresolved. Therefore, the aim of the present study was to analyze the fate of both types of O6-guanine adducts in the presence and absence of MGMT activity. To this end, MGMT activity was efficiently blocked by its chemical inhibitor O6-benzylguanine in human colon epithelial cells (HCECs). Exposure of cells to azaserine (AZA) caused significantly higher levels of both O6-MeG and O6-CMG adducts in MGMT-inhibited cells, with O6-CMG as the more abundant DNA lesion. Interestingly, MGMT inhibition did not result in higher levels of AZA-induced DNA strand breaks in spite of elevated DNA adduct levels. In contrast, MGMT inhibition significantly increased DNA strand break formation after exposure to temozolomide (TMZ), a drug that exclusively generates O6-MeG adducts. In line with this finding, the viability of the cells was moderately reduced by TMZ upon MGMT inhibition, whereas no clear effect was observed in cells treated with AZA. In conclusion, our study clearly shows that O6-CMG is repaired by MGMT in HCEC, thereby suggesting that MGMT might play an important role as a tumor suppressor in diet-mediated colorectal cancer.


Asunto(s)
Colon/metabolismo , Guanina/análogos & derivados , Mucosa Intestinal/metabolismo , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Línea Celular , Colon/citología , Daño del ADN , Reparación del ADN , Guanina/metabolismo , Humanos , Mucosa Intestinal/citología
2.
Molecules ; 26(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34279371

RESUMEN

The important roles of food packaging are food protection and preservation during processing, transportation, and storage. Food can be altered biologically, chemically, and physically if the packaging is unsuitable or mechanically damaged. Furthermore, packaging is an important marketing and communication tool to consumers. Due to the worldwide problem of environmental pollution by microplastics and the large amounts of unused food wastes and by-products from the food industry, it is important to find more environmentally friendly alternatives. Edible and functional food packaging may be a suitable alternative to reduce food waste and avoid the use of non-degradable plastics. In the present review, the production and assessment of edible food packaging from food waste as well as fruit and vegetable by-products and their applications are demonstrated. Innovative food packaging made of biopolymers and biocomposites, as well as active packaging, intelligent packaging, edible films, and coatings are covered.


Asunto(s)
Películas Comestibles , Frutas/química , Verduras/química , Residuos
3.
Arch Toxicol ; 94(11): 3911-3927, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32671443

RESUMEN

Data from epidemiological studies suggest that consumption of red and processed meat is a factor contributing to colorectal carcinogenesis. Red meat contains high amounts of heme, which in turn can be converted to its nitrosylated form, NO-heme, when adding nitrite-containing curing salt to meat. NO-heme might contribute to colorectal cancer formation by causing gene mutations and could thereby be responsible for the association of (processed) red meat consumption with intestinal cancer. Up to now, neither in vitro nor in vivo studies characterizing the mutagenic and cell transforming potential of NO-heme have been published due to the fact that the pure compound is not readily available. Therefore, in the present study, an already existing synthesis protocol was modified to yield, for the first time, purified NO-heme. Thereafter, newly synthesized NO-heme was chemically characterized and used in various in vitro approaches at dietary concentrations to determine whether it can lead to DNA damage and malignant cell transformation. While NO-heme led to a significant dose-dependent increase in the number of DNA strand breaks in the comet assay and was mutagenic in the HPRT assay, this compound tested negative in the Ames test and failed to induce malignant cell transformation in the BALB/c 3T3 cell transformation assay. Interestingly, the non-nitrosylated heme control showed similar effects, but was additionally able to induce malignant transformation in BALB/c 3T3 murine fibroblasts. Taken together, these results suggest that it is the heme molecule rather than the NO moiety which is involved in driving red meat-associated carcinogenesis.


Asunto(s)
Transformación Celular Neoplásica/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Hemo/toxicidad , Neoplasias Intestinales/inducido químicamente , Óxido Nítrico/toxicidad , Animales , Células 3T3 BALB , Células CACO-2 , Carcinogénesis/inducido químicamente , Línea Celular , Ensayo Cometa , Cricetinae , Hemo/química , Humanos , Ratones , Mutagénesis , Mutación , Óxido Nítrico/química , Carne Roja/toxicidad , Factores de Riesgo , Análisis de la Célula Individual
4.
Molecules ; 25(23)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256012

RESUMEN

Phenolic compounds (quercetin, rutin, cyanidin, tangeretin, hesperetin, curcumin, resveratrol, etc.) are known to have health-promoting effects and they are accepted as one of the main proposed nutraceutical group. However, their application is limited owing to the problems related with their stability and water solubility as well as their low bioaccessibility and bioavailability. These limitations can be overcome by encapsulating phenolic compounds by physical, physicochemical and chemical encapsulation techniques. This review focuses on the effects of encapsulation, especially lipid-based techniques (emulsion/nanoemulsion, solid lipid nanoparticles, liposomes/nanoliposomes, etc.), on the digestibility characteristics of phenolic compounds in terms of bioaccessibility and bioavailability.


Asunto(s)
Portadores de Fármacos/química , Composición de Medicamentos , Sistemas de Liberación de Medicamentos , Lípidos/química , Fenoles/química , Fenoles/farmacocinética , Disponibilidad Biológica , Humanos , Estructura Molecular , Polifenoles/química , Distribución Tisular
5.
Antioxidants (Basel) ; 12(11)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38001842

RESUMEN

Heme oxygenase-1 (HO-1) is an enzyme located at the endoplasmic reticulum, which is responsible for the degradation of cellular heme into ferrous iron, carbon monoxide and biliverdin-IXa. In addition to this main function, the enzyme is involved in many other homeostatic, toxic and cancer-related mechanisms. In this review, we first summarize the importance of HO-1 in physiology and pathophysiology with a focus on the digestive system. We then detail its structure and function, followed by a section on the regulatory mechanisms that control HO-1 expression and activity. Moreover, HO-2 as important further HO isoform is discussed, highlighting the similarities and differences with regard to HO-1. Subsequently, we describe the direct and indirect cytoprotective functions of HO-1 and its breakdown products carbon monoxide and biliverdin-IXa, but also highlight possible pro-inflammatory effects. Finally, we address the role of HO-1 in cancer with a particular focus on colorectal cancer. Here, relevant pathways and mechanisms are presented, through which HO-1 impacts tumor induction and tumor progression. These include oxidative stress and DNA damage, ferroptosis, cell cycle progression and apoptosis as well as migration, proliferation, and epithelial-mesenchymal transition.

6.
NPJ Sci Food ; 7(1): 53, 2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805637

RESUMEN

Epidemiological and experimental evidence indicated that processed meat consumption is associated with colorectal cancer risks. Several studies suggest the involvement of nitrite or nitrate additives via N-nitroso-compound formation (NOCs). Compared to the reference level (120 mg/kg of ham), sodium nitrite removal and reduction (90 mg/kg) similarly decreased preneoplastic lesions in F344 rats, but only reduction had an inhibitory effect on Listeria monocytogenes growth comparable to that obtained using the reference nitrite level and an effective lipid peroxidation control. Among the three nitrite salt alternatives tested, none of them led to a significant gain when compared to the reference level: vegetable stock, due to nitrate presence, was very similar to this reference nitrite level, yeast extract induced a strong luminal peroxidation and no decrease in preneoplastic lesions in rats despite the absence of NOCs, and polyphenol rich extract induced the clearest downward trend on preneoplastic lesions in rats but the concomitant presence of nitrosyl iron in feces. Except the vegetable stock, other alternatives were less efficient than sodium nitrite in reducing L. monocytogenes growth.

7.
Food Chem ; 380: 132036, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35101787

RESUMEN

The present study investigated the effects of non-thermal treatments and food matrix on the bioaccessibility and transepithelial transportation of phenolics from cranberrybush. High pressure processing (HPP) was applied at 600 MPa pressure for 5 min, whereas pulsed electric field (PEF) conditions were selected as 5 (PEF5) or 15 kJ/kg (PEF15). To reveal the influence of food matrix, cranberrybush juice was blended with bovine or almond milk. Results showed that PEF15 treatment enhanced the recovery of total flavonoids (TFC; increase of 3.9% ± 1.1), chlorogenic acid (increase of 29.9% ± 5.9) and antioxidant capacity after gastrointestinal digestion. The addition of bovine milk affect posivitely the bioaccessibility of total phenolics (TPC), TFC and antioxidant capacity. While untreated and treated samples exhibit comparable transportation across the epithelial cell layer, juice-bovine milk (JM) and juice-almond milk (JA) blends increased the transport efficiency of chlorogenic acid by 3.5% ± 0.8 and 3.3% ± 0.5, respectively.


Asunto(s)
Viburnum , Animales , Antioxidantes/análisis , Flavonoides , Leche/química , Fenoles/análisis
8.
Antioxidants (Basel) ; 11(3)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35326117

RESUMEN

Lingonberries contain high contents of bioactive compounds such as chlorogenic acids and anthocyanins. In addition to radical scavenging and antioxidant activities, these compounds can protect cells from DNA damage. For this reason, lingonberries might be well suited for nutraceuticals or natural biomedicines. To assess these applications, the present study characterized and identified the most effective extract, only consisting of anthocyanins, copigments or a mixture of both, obtained from a lingonberry juice concentrate. An extract was generated by using a XAD-7 column followed by fractionation into anthocyanins and copigments using adsorptive membrane chromatography. After identification of main polyphenols by HPLC-photodiode array-electrospray ionization-tandem mass spectrometry, free radical scavenging activity was analyzed by electron spin resonance spectroscopy using 2,2-diphenyl-1-picrylhydrazyl and galvinoxyl radicals. Furthermore, cyclic voltammetry analyses and the Trolox equivalent antioxidant capacity (TEAC) assay were applied. Finally, the reactive oxygen species (ROS) reducing effects of the lingonberry extract and its fractions were evaluated in HepG2 cells. While the combination of anthocyanins and copigments possessed the highest antioxidant activities, all samples (XAD-7 extract, anthocyanin and copigment fraction) protected cells from oxidative stress. Thus, synergistic effects between phenolic compounds may be responsible for the high antioxidant potential of lingonberries, enabling their use as nutraceuticals.

9.
Foods ; 9(11)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172172

RESUMEN

Secondary plant metabolites, e.g., polyphenols, are widely known as health-improving compounds that occur in natural functional foods such as pomegranates. While extracts generated from these fruits inhibit oxidative stress, the allocation of these effects to the different subgroups of substances, e.g., anthocyanins, "copigments" (polyphenols without anthocyanins), or polymeric compounds, is still unknown. Therefore, in the present study, polyphenols from pomegranate juice were extracted and separated into an anthocyanin and copigment fraction using adsorptive membrane chromatography. Phenolic compounds were determined by high performance liquid chromatography with photodiode array (HPLC-PDA) detection and HPLC-PDA electrospray ionization tandem mass spectrometry (HPLC-PDA-ESI-MS/MS), while the free radical scavenging activity of the pomegranate XAD­7 extract and its fractions was evaluated by the Trolox equivalent antioxidant capacity (TEAC) assay and electron spin resonance (ESR) spectroscopy. Compared to juice, the total phenolic content and free radical scavenging potential was significantly higher in the pomegranate XAD-7 extract and its fractions. In comparison to the anthocyanin and copigment fraction, pomegranate XAD-7 extract showed the highest radical scavenging activity against galvinoxyl and DPPH radicals. Moreover, the enriched XAD-7 extract and its fractions were able to protect human hepatocellular HepG2 cells against oxidative stress induced by hydrogen peroxide. Overall, these results indicated that anthocyanins and copigments act together in reducing oxidative stress.

10.
Mol Nutr Food Res ; 62(2)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29125219

RESUMEN

SCOPE: Evidence suggests that the dietary consumption of plant extracts containing polyphenols might help prevent the onset of cancers of the gastrointestinal tract. In the present study, the chemopreventive and antiproliferative efficacy of a grapevine shoot extract (Vineatrol®30) containing resveratrol and resveratrol oligomers is investigated in vivo and in vitro. METHODS AND RESULTS: The in vivo study is performed using ApcMin mice on a high-fat diet, which represents a model of human adenomatous polyposis, while the potential of the extract as well as some of its isolated constituents to inhibit intestinal adenoma cell proliferation in vitro is investigated using APC10.1 cells derived from an ApcMin mouse. Vineatrol®30 at a low (2.3 mg kg-1  diet) or high dose (476 mg kg-1  diet) reduces the adenoma number in male and adenoma volume in female animals. Furthermore, Vineatrol®30 as well as resveratrol and two resveratrol tetramers compromise the expansion of APC10.1 cells by reducing cell number, inducing cell cycle arrest, cellular senescence, and apoptosis. However, except for the extract, none of the isolated resveratrol oligomers is more efficacious than resveratrol in these cells. CONCLUSION: Vineatrol®30 may merit further investigation as a potential dietary gastrointestinal cancer chemopreventive agent in humans.


Asunto(s)
Adenoma/prevención & control , Anticarcinógenos/farmacología , Neoplasias Intestinales/prevención & control , Fenoles/farmacología , Resveratrol/farmacología , Adenoma/metabolismo , Adenoma/patología , Animales , Anticarcinógenos/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Caspasas/metabolismo , Proliferación Celular/efectos de los fármacos , Femenino , Neoplasias Intestinales/metabolismo , Neoplasias Intestinales/patología , Masculino , Ratones Mutantes , Fenoles/química , Resveratrol/química , Estilbenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA