Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Soc Rev ; 52(14): 4672-4724, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37338993

RESUMEN

The biomedical use of nanoparticles (NPs) has been the focus of intense research for over a decade. As most NPs are explored as carriers to alter the biodistribution, pharmacokinetics and bioavailability of associated drugs, the delivery of these NPs to the tissues of interest remains an important topic. To date, the majority of NP delivery studies have used tumor models as their tool of interest, and the limitations concerning tumor targeting of systemically administered NPs have been well studied. In recent years, the focus has also shifted to other organs, each presenting their own unique delivery challenges to overcome. In this review, we discuss the recent advances in leveraging NPs to overcome four major biological barriers including the lung mucus, the gastrointestinal mucus, the placental barrier, and the blood-brain barrier. We define the specific properties of these biological barriers, discuss the challenges related to NP transport across them, and provide an overview of recent advances in the field. We discuss the strengths and shortcomings of different strategies to facilitate NP transport across the barriers and highlight some key findings that can stimulate further advances in this field.


Asunto(s)
Nanopartículas , Neoplasias , Embarazo , Humanos , Femenino , Portadores de Fármacos/uso terapéutico , Distribución Tisular , Placenta/patología , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos
2.
J Nanobiotechnology ; 20(1): 333, 2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842697

RESUMEN

Red blood cell (RBC) hitchhiking has great potential in enhancing drug therapy, by improving targeting and reducing rapid clearance of nanoparticles (NPs). However, to improve the potential for clinical translation of RBC hitchhiking, a more thorough understanding of the RBC-NP interface is needed. Here, we evaluate the effects of NP surface parameters on the success and biocompatibility of NP adsorption to extracted RBCs from various species. Major differences in RBC characteristics between rabbit, mouse and human were proven to significantly impact NP adsorption outcomes. Additionally, the effects of NP design parameters, including NP hydrophobicity, zeta potential, surfactant concentration and drug encapsulation, on RBC hitchhiking are investigated. Our studies demonstrate the importance of electrostatic interactions in balancing NP adsorption success and biocompatibility. We further investigated the effect of varying the anti-coagulant used for blood storage. The results presented here offer new insights into the parameters that impact NP adsorption on RBCs that will assist researchers in experimental design choices for using RBC hitchhiking as drug delivery strategy.


Asunto(s)
Nanopartículas , Adsorción , Animales , Sistemas de Liberación de Medicamentos/métodos , Eritrocitos , Humanos , Ratones , Nanopartículas/uso terapéutico , Polímeros/farmacología , Conejos
3.
Adv Healthc Mater ; : e2401306, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031098

RESUMEN

Cancer immunotherapy has emerged as a promising approach for the induction of an antitumor response. While immunotherapy response rates are very high in some cancers, the efficacy against solid tumors remains limited caused by the presence of an immunosuppressive tumor microenvironment. Induction of immunogenic cell death (ICD) in the tumor can be used to boost immunotherapy response in solid cancers by eliciting the release of immune-stimulatory components. However, the delivery of components inducing ICD to tumor sites remains a challenge. Here, a novel delivery method is described for antitumor therapy based on MLKL (Mixed Lineage Kinase Domain-Like), a key mediator of necroptosis and inducer of ICD. A novel highly branched poly (ß-amino ester)s (HPAEs) system is designed to efficiently deliver MLKL plasmid DNA to the tumor with consequent enhancement of immune antigen presentation for T cell responses in vitro, and improved antitumor response and prolonged survival in tumor-bearing mice. Combination of the therapy with anti-PD-1 treatment revealed significant changes in the composition of the tumor microenvironment, including increased infiltration of CD8+ T cells and tumor-associated lymphocytes. Overall, the HPAEs delivery system can enhance MLKL-based cancer immunotherapy and promote antitumor immune responses, providing a potential treatment to boost cancer immunotherapies.

4.
Cancers (Basel) ; 15(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36980804

RESUMEN

Orthotopic glioblastoma xenografts are paramount for evaluating the effect of innovative anti-cancer treatments. In longitudinal studies, tumor growth (or regression) of glioblastoma can only be monitored by noninvasive imaging. For this purpose, bioluminescence imaging (BLI) has gained popularity because of its low cost and easy access. In the context of the development of new nanomedicines for treating glioblastoma, we were using luciferase-expressing GL261 cell lines. Incidentally, using BLI in a specific GL261 glioblastoma model with cells expressing both luciferase and the green fluorescent protein (GL261-luc-GFP), we observed an apparent spontaneous regression. By contrast, the magnetic resonance imaging (MRI) analysis revealed that the tumors were actually growing over time. For other models (GL261 expressing only luciferase and U87 expressing both luciferase and GFP), data from BLI and MRI correlated well. We found that the divergence in results coming from different imaging modalities was not due to the tumor localization nor the penetration depth of light but was rather linked to the instability in luciferase expression in the viral construct used for the GL261-luc-GFP model. In conclusion, the use of multi-modality imaging prevents possible errors in tumor growth evaluation, and checking the stability of luciferase expression is mandatory when using BLI as the sole imaging modality.

5.
Nanoscale Adv ; 2(11): 5046-5089, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36132021

RESUMEN

Research efforts on nanomaterial-based therapies for the treatment of autoimmune diseases and cancer have spiked and have made rapid progress over the past years. Nanomedicine has been shown to contribute significantly to overcome current therapeutic limitations, exhibiting advantages compared to conventional therapeutics, such as sustained drug release, delayed drug degradation and site-specific drug delivery. Multiple nanodrugs have reached the clinic, but translation is often hampered by either low targeting efficiency or undesired side effects. Nanomaterials, and especially inorganic nanoparticles, have gained criticism due to their potential toxic effects, including immunological alterations. However, many strategies have been attempted to improve the therapeutic efficacy of nanoparticles and exploit their unique properties for the treatment of inflammation and associated diseases. In this review, we elaborate on the immunomodulatory effects of nanomaterials, with a strong focus on the underlying mechanisms that lead to these specific immune responses. Nanomaterials to be discussed include inorganic nanoparticles such as gold, silica and silver, as well as organic nanomaterials such as polymer-, dendrimer-, liposomal- and protein-based nanoparticles. Furthermore, various approaches for tuning nanomaterials in order to enhance their efficacy and attenuate their immune stimulation or suppression, with respect to the therapeutic application, are described. Additionally, we illustrate how the acquired insights have been used to design immunotherapeutic strategies for a variety of diseases. The potential of nanomedicine-based therapeutic strategies in immunotherapy is further illustrated by an up to date overview of current clinical trials. Finally, recent efforts into enhancing immunogenic cell death through the use of nanoparticles are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA