Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
BMC Genomics ; 20(1): 504, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31208335

RESUMEN

BACKGROUND: Enterohemorrhagic Escherichia coli (E. coli) are intestinal pathogenic bacteria that cause life-threatening disease in humans. Their cardinal virulence factor is Shiga toxin (Stx), which is encoded on lambdoid phages integrated in the chromosome. Stx phages can infect and lysogenize susceptible bacteria, thus either increasing the virulence of already pathogenic bacterial hosts or transforming commensal strains into potential pathogens. There is increasing evidence that Stx phage-encoded factors adaptively regulate bacterial host gene expression. Here, we investigated the effects of Stx phage carriage in E. coli K-12 strain MG1655. We compared the transcriptome and phenotype of naive MG1655 and two lysogens carrying closely related Stx2a phages: ϕO104 from the exceptionally pathogenic 2011 E. coli O104:H4 outbreak strain and ϕPA8 from an E. coli O157:H7 isolate. RESULTS: Analysis of quantitative RNA sequencing results showed that, in comparison to naive MG1655, genes involved in mixed acid fermentation were upregulated, while genes encoding NADH dehydrogenase I, TCA cycle enzymes and proteins involved in the transport and assimilation of carbon sources were downregulated in MG1655::ϕO104 and MG1655::ϕPA8. The majority of the changes in gene expression were found associated with the corresponding phenotypes. Notably, the Stx2a phage lysogens displayed moderate to severe growth defects in minimal medium supplemented with single carbon sources, e.g. galactose, ribose, L-lactate. In addition, in phenotype microarray assays, the Stx2a phage lysogens were characterized by a significant decrease in the cell respiration with gluconeogenic substrates such as amino acids, nucleosides, carboxylic and dicarboxylic acids. In contrast, MG1655::ϕO104 and MG1655::ϕPA8 displayed enhanced respiration with several sugar components of the intestinal mucus, e.g. arabinose, fucose, N-acetyl-D-glucosamine. We also found that prophage-encoded factors distinct from CI and Cro were responsible for the carbon utilization phenotypes of the Stx2a phage lysogens. CONCLUSIONS: Our study reveals a profound impact of the Stx phage carriage on E. coli carbon source utilization. The Stx2a prophage appears to reprogram the carbon metabolism of its bacterial host by turning down aerobic metabolism in favour of mixed acid fermentation.


Asunto(s)
Carbono/metabolismo , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Regulación Bacteriana de la Expresión Génica , Profagos/fisiología , Toxina Shiga/metabolismo , Escherichia coli O157/crecimiento & desarrollo , Escherichia coli O157/virología , Perfilación de la Expresión Génica , Fenotipo , Profagos/metabolismo
2.
J Lipid Res ; 59(8): 1383-1401, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29866658

RESUMEN

Shiga toxins (Stxs) are the major virulence factors of Stx-producing Escherichia coli (STEC), which cause hemorrhagic colitis and severe extraintestinal complications due to injury of renal endothelial cells, resulting in kidney failure. Since kidney epithelial cells are suggested additional targets for Stxs, we analyzed Madin-Darby canine kidney (MDCK) II epithelial cells for presence of Stx-binding glycosphingolipids (GSLs), determined their distribution to detergent-resistant membranes (DRMs), and ascertained the lipid composition of DRM and non-DRM preparations. Globotriaosylceramide and globotetraosylceramide, known as receptors for Stx1a, Stx2a, and Stx2e, and Forssman GSL as a specific receptor for Stx2e, were found to cooccur with SM and cholesterol in DRMs of MDCK II cells, which was shown using TLC overlay assay detection combined with mass spectrometry. The various lipoforms of GSLs were found to mainly harbor ceramide moieties composed of sphingosine (d18:1) and C24:1/C24:0 or C16:0 FA. The cells were highly refractory toward Stx1a, Stx2a, and Stx2e, most likely due to the absence of Stx-binding GSLs in the apical plasma membrane determined by immunofluorescence confocal laser scanning microscopy. The results suggest that the cellular content of Stx receptor GSLs and their biochemical detection in DRM preparations alone are inadequate to predict cellular sensitivity toward Stxs.


Asunto(s)
Membrana Celular/metabolismo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Glicoesfingolípidos/metabolismo , Toxina Shiga/metabolismo , Toxina Shiga/toxicidad , Animales , Membrana Celular/efectos de los fármacos , Colesterol/metabolismo , Perros , Riñón/citología , Células de Riñón Canino Madin Darby , Fosfolípidos/metabolismo
3.
Int J Med Microbiol ; 308(7): 912-920, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29941383

RESUMEN

Escherichia coli O104:H4 (E. coli O104:H4), which caused in 2011 a massive foodborne outbreak in Germany, is characterized by an unusual combination of virulence traits. E. coli O104:H4 contains a prophage-encoded Shiga toxin (Stx) gene, which is the cardinal virulence factor of enterohemorrhagic E. coli (EHEC). However, the outbreak strain shares highest DNA sequence similarity with enteroaggregative E. coli (EAEC) and displays the EAEC-characteristic tight adherence to epithelial cells. The virulence potential of the underlying EAEC background has not been investigated and it is therefore not clear whether E. coli O104:H4 displays distinct virulence characteristics in comparison to prototypical EAEC. In this study, we performed a detailed comparative phenotypic characterization of the Stx phage-cured E. coli O104:H4 strain C227-11φcu, the closely related EAEC strain 55989 and two other well-characterized EAEC strains 042 and 17-2 with focus on virulence traits. C227-11φcu displayed superior aggregative adherence phenotype to cultured HCT-8 epithelial cells, adhering with 3-6 times more bacteria per epithelial cells than the tested EAEC strains. Otherwise, C227-11φcu showed similar virulence characteristics to its closest relative 55989, i.e. strong acid resistance, good biofilm formation and cytotoxic culture supernatants. Furthermore, C227-11φcu was characterized by significantly weaker motility and pro-inflammatory properties than 55989 and 042, nevertheless stronger than 17-2. Taken together, C227-11φcu displayed mostly robust, but not outstanding virulence characteristics in comparison to the tested EAEC. Therefore, it appears likely that the combination of Stx production and EAEC characteristics in general, rather than an exceptionally potent EAEC background resulted in the unusual virulence of the E. coli O104:H4. Thus, the emergence of such hypervirulent strains in the future might be more likely than previously anticipated.


Asunto(s)
Bacteriófagos/genética , Infecciones por Escherichia coli/epidemiología , Escherichia coli O104/genética , Escherichia coli O104/patogenicidad , Enfermedades Transmitidas por los Alimentos/epidemiología , Toxina Shiga/genética , Adhesión Bacteriana/genética , Biopelículas , ADN Bacteriano/genética , Brotes de Enfermedades , Infecciones por Escherichia coli/microbiología , Escherichia coli O104/aislamiento & purificación , Enfermedades Transmitidas por los Alimentos/microbiología , Alemania/epidemiología , Humanos , Virulencia/genética , Factores de Virulencia/genética
4.
Cell Microbiol ; 18(10): 1339-48, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26990252

RESUMEN

Haemolytic anaemia is one of the characteristics of life-threatening extraintestinal complications in humans during infection with enterohaemorrhagic Escherichia coli (EHEC). Shiga toxins (Stxs) of EHEC preferentially damage microvascular endothelial cells of the kidney and the brain, whereby occluded small blood vessels may elicit anaemia through mechanical erythrocyte disruption. Here we show for the first time that Stx2a, the major virulence factor of EHEC, is also capable of direct targeting developing human erythrocytes. We employed an ex vivo erythropoiesis model using mobilized CD34(+) haematopoietic stem/progenitor cells from human blood and monitored expression of Stx receptors and Stx2a-mediated cellular injury of developing erythrocytes. CD34(+) haematopoietic stem/progenitor cells were negative for Stx2a receptors and resistant towards the toxin. Expression of Stx2a-binding glycosphingolipids and toxin sensitivity was apparent immediately after initiation of erythropoietic differentiation, peaked for basophilic and polychromatic erythroblast stages and declined during maturation into orthochromatic erythroblasts and reticulocytes, which became highly refractory to Stx2a. The observed Stx-mediated toxicity towards erythroblasts during the course of erythropoiesis might contribute, although speculative at this stage of research, to the anaemia caused by Stx-producing pathogens.


Asunto(s)
Escherichia coli Enterohemorrágica/fisiología , Células Madre Hematopoyéticas/fisiología , Toxina Shiga/farmacología , Supervivencia Celular , Células Cultivadas , Eritrocitos/microbiología , Eritrocitos/fisiología , Hematopoyesis/inmunología , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/microbiología , Humanos
5.
Anal Chem ; 88(11): 5595-9, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27212679

RESUMEN

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can be used to simultaneously visualize the lateral distribution of different lipid classes in tissue sections, but the applicability of the method to real-life samples is often limited by ion suppression effects. In particular, the presence of abundant phosphatidylcholines (PCs) can reduce the ion yields for all other lipid species in positive ion mode measurements. Here, we used on-tissue treatment with buffer-free phospholipase C (PLC) to near-quantitatively degrade PCs in fresh-frozen tissue sections. The ion signal intensities of mono-, di-, and oligohexosylceramides were enhanced by up to 10-fold. In addition, visualization of Shiga toxin receptor globotriaosylceramide (Gb3Cer) in the kidneys of wild-type and α-galactosidase A-knockout (Fabry) mice was possible at about ten micrometer resolution. Importantly, the PLC treatment did not decrease the high lateral resolution of the MS imaging analysis.


Asunto(s)
Encéfalo/enzimología , Riñón/enzimología , Glicoesfingolípidos Neutros/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Fosfolipasas de Tipo C/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Glicoesfingolípidos Neutros/metabolismo , Fosfolipasas de Tipo C/química
6.
Infect Immun ; 82(11): 4631-42, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25156739

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC), a subgroup of Shiga toxin (Stx)-producing E. coli (STEC), is a leading cause of diarrhea and hemolytic-uremic syndrome (HUS) in humans. However, urinary tract infections (UTIs) caused by this microorganism but not associated with diarrhea have occasionally been reported. We geno- and phenotypically characterized three EHEC isolates obtained from the urine of hospitalized patients suffering from UTIs. These isolates carried typical EHEC virulence markers and belonged to HUS-associated E. coli (HUSEC) clones, but they lacked virulence markers typical of uropathogenic E. coli. One isolate exhibited a localized adherence (LA)-like pattern on T24 urinary bladder epithelial cells. Since the glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) are well-known receptors for Stx but also for P fimbriae, a major virulence factor of extraintestinal pathogenic E. coli (ExPEC), the expression of Gb3Cer and Gb4Cer by T24 cells and in murine urinary bladder tissue was examined by thin-layer chromatography and mass spectrometry. We provide data indicating that Stxs released by the EHEC isolates bind to Gb3Cer and Gb4Cer isolated from T24 cells, which were susceptible to Stx. All three EHEC isolates expressed stx genes upon growth in urine. Two strains were able to cause UTI in a murine infection model and could not be outcompeted in urine in vitro by typical uropathogenic E. coli isolates. Our results indicate that despite the lack of ExPEC virulence markers, EHEC variants may exhibit in certain suitable hosts, e.g., in hospital patients, a uropathogenic potential. The contribution of EHEC virulence factors to uropathogenesis remains to be further investigated.


Asunto(s)
Cistitis/microbiología , Escherichia coli Enterohemorrágica/aislamiento & purificación , Escherichia coli Enterohemorrágica/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones Urinarias/microbiología , Adulto , Anciano , Animales , Línea Celular , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/patogenicidad , Femenino , Humanos , Ratones , Adulto Joven
7.
Anal Chem ; 86(2): 1215-22, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24386974

RESUMEN

In order to proceed in detection and structural analysis of glycosphingolipids (GSLs) in crude lipid extracts, which still remains a challenge in glycosphingolipidomics, we developed a strategy to structurally characterize neutral GSLs in total lipid extracts prepared from in vitro propagated human monocytic THP-1 cells, which were used as a model cell line. The procedure divides into (1) extraction of total lipids from cellular material, (2) enzymatical disintegration of phospholipids by treatment of the crude lipid extract with phospholipase C, (3) subsequent multiple thin-layer chromatography (TLC) overlay detection of individual GSLs with a mixture of various anti-GSL antibodies, and (4) structural analysis of immunostained GSLs directly on the TLC plate using infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry (IR-MALDI-o-TOF MS) in combination with collision-induced dissociation (CID). Whereas GSLs were mostly undetectable in untreated crude lipid extracts, pretreatment with phospholipase C resulted in clear-cut mass spectra. MS(1) and MS(2) analysis gave similar results when compared to those obtained with a highly purified neutral GSL preparation of THP-1 cells, which served as a control. We could demonstrate in this study the feasibility of simultaneous multiple immunodetection of individual neutral GSLs in one and the same TLC run and their structural characterization in crude lipid extracts after phospholipase C treatment, thereby avoiding laborious and long-lasting sample purification. This powerful combinatorial technique allows for efficient structural characterization of GSLs in small tissue samples and takes a step forward in the emerging field of glycosphingolipidomics.


Asunto(s)
Mezclas Complejas/química , Glicoesfingolípidos/análisis , Monocitos/química , Fosfolipasas de Tipo C/química , Anticuerpos Antifosfolípidos/química , Línea Celular , Cromatografía en Capa Delgada/métodos , Glicoesfingolípidos/química , Humanos , Inmunoquímica , Lipólisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrofotometría Infrarroja
8.
J Lipid Res ; 54(3): 692-710, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23248329

RESUMEN

Glycosphingolipids (GSLs) of the globo-series constitute specific receptors for Shiga toxins (Stxs) released by certain types of pathogenic Escherichia coli strains. Stx-loaded leukocytes may act as transporter cells in the blood and transfer the toxin to endothelial target cells. Therefore, we performed a thorough investigation on the expression of globo-series GSLs in serum-free cultivated Raji and Jurkat cells, representing B- and T-lymphocyte descendants, respectively, as well as THP-1 and HL-60 cells of the monocyte and granulocyte lineage, respectively. The presence of Stx-receptors in GSL preparations of Raji and THP-1 cells and the absence in Jurkat and HL-60 cells revealed high compliance of solid-phase immunodetection assays with the expression profiles of receptor-related glycosyltransferases, performed by qRT-PCR analysis, and Stx2-caused cellular damage. Canonical microdomain association of Stx GSL receptors, sphingomyelin, and cholesterol in membranes of Raji and THP-1 cells was assessed by comparative analysis of detergent-resistant membrane (DRM) and nonDRM fractions obtained by density gradient centrifugation and showed high correlation based on nonparametric statistical analysis. Our comprehensive study on the expression of Stx-receptors and their subcellular distribution provides the basis for exploring the functional role of lipid raft-associated Stx-receptors in cells of leukocyte origin.


Asunto(s)
Glicoesfingolípidos/metabolismo , Linfocitos/metabolismo , Microdominios de Membrana/metabolismo , Células Mieloides/metabolismo , Toxina Shiga/metabolismo , Western Blotting , Línea Celular , Proliferación Celular , Electroforesis en Gel de Poliacrilamida , Galactosiltransferasas/metabolismo , Globósidos/metabolismo , Células HL-60 , Humanos , N-Acetilgalactosaminiltransferasas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Trihexosilceramidas/metabolismo
9.
Glycobiology ; 23(6): 745-59, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23431059

RESUMEN

Shiga toxin (Stx) 2e, released by certain Stx-producing Escherichia coli, is presently the best characterized virulence factor responsible for pig edema disease, which is characterized by hemorrhagic lesions, neurological disorders and often fatal outcomes. Although Stx2e-mediated brain vascular injury is the key event in development of neurologic signs, the glycosphingolipid (GSL) receptors of Stx2e and toxin-mediated impairment of pig brain endothelial cells have not been investigated so far. Here, we report on the detailed structural characterization of Stx2e receptors globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), which make up the major neutral GSLs in primary porcine brain capillary endothelial cells (PBCECs). Various Gb3Cer and Gb4Cer lipoforms harboring sphingenine (d18:1) or sphinganine (d18:0) and mostly a long-chain fatty acid (C20-C24) were detected. A notable batch-to-batch heterogeneity of primary endothelial cells was observed regarding the extent of ceramide hydroxylation of Gb3Cer or Gb4Cer species. Gb3Cer, Gb4Cer and sphingomyelin preferentially distribute to detergent-resistant membrane fractions and can be considered lipid raft markers in PBCECs. Moreover, we employed an in vitro model of the blood-brain barrier (BBB), which exhibited strong cytotoxic effects of Stx2e on the endothelial monolayer and a rapid collapse of the BBB. These data strongly suggest the involvement of Stx2e in cerebral vascular damage with resultant neurological disturbance characteristic of edema disease.


Asunto(s)
Barrera Hematoencefálica/patología , Células Endoteliales/metabolismo , Globósidos/metabolismo , Trihexosilceramidas/metabolismo , Animales , Barrera Hematoencefálica/inmunología , Encéfalo/patología , Conformación de Carbohidratos , Secuencia de Carbohidratos , Técnicas de Cultivo de Célula , Membrana Celular/metabolismo , Células Cultivadas , Impedancia Eléctrica , Células Endoteliales/inmunología , Endotelio/inmunología , Endotelio/fisiopatología , Globósidos/química , Glucolípidos/química , Glucolípidos/metabolismo , Datos de Secuencia Molecular , Cultivo Primario de Células , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Toxina Shiga II/farmacología , Sus scrofa , Trihexosilceramidas/química
10.
Biol Chem ; 393(8): 785-99, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22944681

RESUMEN

Shiga toxins (Stxs) are composed of an enzymatically active A subunit (StxA) and a pentameric B subunit (StxB) that preferentially binds to the glycosphingolipid (GSL) globo\xadtriaosylceramide (Gb3Cer/CD77) and to a reduced extent to globotetraosylceramide (Gb4Cer). The identification of Gb3Cer as a tumor-associated GSL in human pancreatic cancer prompted us to investigate the expression of Gb3Cer and Gb4Cer in 15 human pancreatic ductal adenocarcinoma cell lines derived from primary tumors and liver, ascites, and lymph node metastases. Thin-layer chromatography overlay assays revealed the occurrence of Gb3Cer in all and of Gb4Cer in the majority of cell lines, which largely correlated with transcriptional expression analysis of Gb3Cer and Gb4Cer synthases. Prominent Gb3Cer and Gb4Cer lipoform heterogeneity was based on ceramides carrying predominantly C16:0 and C24:0/C24:1 fatty acids. Stx2-mediated cell injury ranged from extremely high sensitivity (CD(50) of 0.94 pg/ml) to high refractiveness (CD(50) of 5.8 µg/ml) and to virtual resistance portrayed by non-determinable CD(50) values even at the highest Stx2 concentration (10 µg/ml) applied. Importantly, Stx2-mediated cytotoxicity did not correlate with Gb3Cer expression (the preferential Stx receptor), suggesting that the GSL receptor content does not primarily determine cell sensitivity and that other, yet to be delineated, cellular factors might influence the responsiveness of cancer cells.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Supervivencia Celular/efectos de los fármacos , Globósidos/genética , Toxina Shiga II/farmacología , Trihexosilceramidas/genética , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Adenocarcinoma/secundario , Ascitis/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/secundario , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Globósidos/análisis , Globósidos/metabolismo , Humanos , Neoplasias Hepáticas/patología , Ganglios Linfáticos/patología , Toxina Shiga II/aislamiento & purificación , Escherichia coli Shiga-Toxigénica/química , Trihexosilceramidas/análisis , Trihexosilceramidas/metabolismo
11.
J Cell Biol ; 221(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35293964

RESUMEN

Contact inhibition of locomotion (CIL) is a process that regulates cell motility upon collision with other cells. Improper regulation of CIL has been implicated in cancer cell dissemination. Here, we identify the cell adhesion molecule JAM-A as a central regulator of CIL in tumor cells. JAM-A is part of a multimolecular signaling complex in which tetraspanins CD9 and CD81 link JAM-A to αvß5 integrin. JAM-A binds Csk and inhibits the activity of αvß5 integrin-associated Src. Loss of JAM-A results in increased activities of downstream effectors of Src, including Erk1/2, Abi1, and paxillin, as well as increased activity of Rac1 at cell-cell contact sites. As a consequence, JAM-A-depleted cells show increased motility, have a higher cell-matrix turnover, and fail to halt migration when colliding with other cells. We also find that proper regulation of CIL depends on αvß5 integrin engagement. Our findings identify a molecular mechanism that regulates CIL in tumor cells and have implications on tumor cell dissemination.


Asunto(s)
Inhibición de Contacto , Adhesión Celular , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular , Inhibición de Contacto/genética , Receptores de Vitronectina , Tetraspaninas
12.
Sci Rep ; 10(1): 4945, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188865

RESUMEN

The cardinal virulence factor of human-pathogenic enterohaemorrhagic Escherichia coli (EHEC) is Shiga toxin (Stx), which causes severe extraintestinal complications including kidney failure by damaging renal endothelial cells. In EHEC pathogenesis, the disturbance of the kidney epithelium by Stx becomes increasingly recognised, but how this exactly occurs is unknown. To explore this molecularly, we investigated the Stx receptor content and transcriptomic profile of two human renal epithelial cell lines: highly Stx-sensitive ACHN cells and largely Stx-insensitive Caki-2 cells. Though both lines exhibited the Stx receptor globotriaosylceramide, RNAseq revealed strikingly different transcriptomic responses to an Stx challenge. Using RNAi to silence factors involved in ACHN cells' Stx response, the greatest protection occurred when silencing RAB5A and TRAPPC6B, two host factors that we newly link to Stx trafficking. Silencing these factors alongside YKT6 fully prevented the cytotoxic Stx effect. Overall, our approach reveals novel subcellular targets for potential therapies against Stx-mediated kidney failure.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Riñón/efectos de los fármacos , Toxina Shiga II/farmacología , Proteínas de Transporte Vesicular/antagonistas & inhibidores , Proteínas de Unión al GTP rab5/antagonistas & inhibidores , Células Cultivadas , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Humanos , Riñón/metabolismo
13.
Adv Sci (Weinh) ; 6(21): 1900709, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31728274

RESUMEN

The nuclear envelope is an undisputed component of the intracellular mechanotransduction cascades which collect, process, and respond to mechanical stimuli from the environment. At the same time, the nuclear envelope performs the function of a selective barrier between the nuclear and cytoplasmic compartments. Although the mechanosensing and the barrier functions of the nuclear envelope have both been subjects of intense research, a possible reciprocal relationship between them is only beginning to emerge. In this report, the role of the nucleocytoplasmic permeability barrier is evaluated in nuclear mechanics. Using a combination of atomic force and confocal microscopy, the functional state of the nucleocytoplasmic permeability barrier and the nuclear mechanics is monitored. By modulating the stringency of the barrier and simulating the active transport imbalance across the nuclear envelope, the decisive impact of these parameters on nuclear mechanics is demonstrated. It is concluded that the nucleocytoplasmic barrier is the second essential component of the intracellular mechanostat function performed by the nuclear envelope.

14.
Bioeng Transl Med ; 4(3): e10136, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31572794

RESUMEN

Nuclear pore complexes (NPCs) are sophisticated transporters assembled from diverse proteins termed nucleoporins (Nups). They control all nucleocytoplasmic transport and form a stringent barrier between the cytosol and the nucleus. While selective receptor-mediated transport enables translocation of macromolecules up to striking sizes approaching megadalton-scale, the upper cutoff for diffusion is at 40 kDa. Raising the cutoff is of particular importance for nuclear delivery of therapeutic nanoparticles, for example, gene and chemotherapy. In this work, we set out to present compounds capable of raising the cutoff to an extent enabling nuclear delivery of 6 kbp pDNA (150 kDa) in cultured human vascular endothelial cells. Of all tested compounds one is singled out, 1,6-hexanediol (1,6-HD). Our observations reveal that 1,6-HD facilitates nuclear delivery of pDNA in up to 10-20% of the tested cells, compared to no delivery at all in control conditions. It acts by interfering with bonds between Nups that occupy the NPC channel and confer transport selectivity. It also largely maintains cell viability even at high concentrations. We envisage that 1,6-HD may serve as a lead substance and usher in the design of potent new strategies to increase nuclear delivery of therapeutic nanoparticles.

15.
Toxins (Basel) ; 9(11)2017 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-29068380

RESUMEN

Shiga toxins (Stxs) released by enterohemorrhagic Escherichia coli (EHEC) into the human colon are the causative agents for fatal outcome of EHEC infections. Colon epithelial Caco-2 and HCT-8 cells are widely used for investigating Stx-mediated intestinal cytotoxicity. Only limited data are available regarding precise structures of their Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), and lipid raft association. In this study we identified Gb3Cer and Gb4Cer lipoforms of serum-free cultivated Caco-2 and HCT-8 cells, chiefly harboring ceramide moieties composed of sphingosine (d18:1) and C16:0, C22:0 or C24:0/C24:1 fatty acid. The most significant difference between the two cell lines was the prevalence of Gb3Cer with C16 fatty acid in HCT-8 and Gb4Cer with C22-C24 fatty acids in Caco-2 cells. Lipid compositional analysis of detergent-resistant membranes (DRMs), which were used as lipid raft-equivalents, indicated slightly higher relative content of Stx receptor Gb3Cer in DRMs of HCT-8 cells when compared to Caco-2 cells. Cytotoxicity assays revealed substantial sensitivity towards Stx2a for both cell lines, evidencing little higher susceptibility of Caco-2 cells versus HCT-8 cells. Collectively, Caco-2 and HCT-8 cells express a plethora of different receptor lipoforms and are susceptible towards Stx2a exhibiting somewhat lower sensitivity when compared to Vero cells.


Asunto(s)
Células Epiteliales/química , Trihexosilceramidas/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Colon/citología , Células Epiteliales/efectos de los fármacos , Humanos , Toxina Shiga II/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA