Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(51): 25516-25523, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31792179

RESUMEN

The interface between water and folded proteins is very complex. Proteins have "patchy" solvent-accessible areas composed of domains of varying hydrophobicity. The textbook understanding is that these domains contribute additively to interfacial properties (Cassie's equation, CE). An ever-growing number of modeling papers question the validity of CE at molecular length scales, but there is no conclusive experiment to support this and no proposed new theoretical framework. Here, we study the wetting of model compounds with patchy surfaces differing solely in patchiness but not in composition. Were CE to be correct, these materials would have had the same solid-liquid work of adhesion (WSL ) and time-averaged structure of interfacial water. We find considerable differences in WSL , and sum-frequency generation measurements of the interfacial water structure show distinctively different spectral features. Molecular-dynamics simulations of water on patchy surfaces capture the observed behaviors and point toward significant nonadditivity in water density and average orientation. They show that a description of the molecular arrangement on the surface is needed to predict its wetting properties. We propose a predictive model that considers, for every molecule, the contributions of its first-nearest neighbors as a descriptor to determine the wetting properties of the surface. The model is validated by measurements of WSL in multiple solvents, where large differences are observed for solvents whose effective diameter is smaller than ∼6 Å. The experiments and theoretical model proposed here provide a starting point to develop a comprehensive understanding of complex biological interfaces as well as for the engineering of synthetic ones.

2.
J Chem Phys ; 149(23): 234704, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30579299

RESUMEN

Interfacial phase transitions are of fundamental importance for climate, industry, and biological processes. In this work, we observe a hydration mediated surface transition in supercooled oil nanodroplets in aqueous solutions using second harmonic and sum frequency scattering techniques. Hexadecane nanodroplets dispersed in water freeze at a temperature of ∼15 °C below the melting point of the bulk alkane liquid. Addition of a trimethylammonium bromide (CXTA+) type surfactant with chain length equal to or longer than that of the alkane causes the bulk oil droplet freezing transition to be preceded by a structural interfacial transition that involves water, oil, and the surfactant. Upon cooling, the water loses some of its orientational order with respect to the surface normal, presumably by reorienting more parallel to the oil interface. This is followed by the surface oil and surfactant alkyl chains losing some of their flexibility, and this chain stretching induces alkyl chain ordering in the bulk of the alkane phase, which is then followed by the bulk transition occurring at a 3 °C lower temperature. This behavior is reminiscent of surface freezing observed in planar tertiary alkane/surfactant/water systems but differs distinctively in that it appears to be induced by the interfacial water and requires only a very small amount of surfactant.

3.
J Phys Chem B ; 125(45): 12457-12465, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34730965

RESUMEN

Morphological and gel-to-liquid phase transitions of lipid membranes are generally considered to primarily depend on the structural motifs in the hydrophobic core of the bilayer. Structural changes in the aqueous headgroup phase are typically not considered, primarily because they are difficult to quantify. Here, we investigate structural changes of the hydration shells around large unilamellar vesicles (LUVs) in aqueous solution, using differential scanning calorimetry (DSC), and temperature-dependent ζ-potential and high-throughput angle-resolved second harmonic scattering measurements (AR-SHS). Varying the lipid composition from 1,2-dimyristoyl-sn-glycero-3-phosphocholine(DMPC) to 1,2-dimyristoyl-sn-glycero-3-phosphate (DMPA), to 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine (DMPS), we observe surprisingly distinct behavior for the different systems that depend on the chemical composition of the hydrated headgroups. These differences involve changes in hydration following temperature-induced counterion redistribution, or changes in hydration following headgroup reorientation and Stern layer compression.


Asunto(s)
Membrana Dobles de Lípidos , Agua , Rastreo Diferencial de Calorimetría , Dimiristoilfosfatidilcolina , Liposomas Unilamelares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA