Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Adv ; 6(42)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33067238

RESUMEN

Antigen-specific particles can treat autoimmunity, and pulmonary delivery may provide for easier delivery than intravenous or subcutaneous routes. The lung is a "hub" for autoimmunity where autoreactive T cells pass before arriving at disease sites. Here, we report that targeting lung antigen-presenting cells (APCs) via antigen-loaded poly(lactide-co-glycolide) particles modulates lung CD4+ T cells to tolerize murine experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Particles directly delivered to the lung via intratracheal administration demonstrated more substantial reduction in EAE severity when compared with particles delivered to the liver and spleen via intravenous administration. Intratracheally delivered particles were associated with lung APCs and decreased costimulatory molecule expression on the APCs, which inhibited CD4+ T cell proliferation and reduced their population in the central nervous system while increasing them in the lung. This study supports noninvasive pulmonary particle delivery, such as inhalable administration, to treat autoimmune disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Nanopartículas , Animales , Células Presentadoras de Antígenos/metabolismo , Antígenos/metabolismo , Linfocitos T CD4-Positivos , Encefalomielitis Autoinmune Experimental/metabolismo , Pulmón , Ratones , Ratones Endogámicos C57BL
2.
Biomaterials ; 222: 119432, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31480002

RESUMEN

Current therapeutic options for autoimmune diseases, such as multiple sclerosis (MS), often require lifelong treatment with immunosuppressive drugs, yet strategies for antigen-specific immunomodulation are emerging. Biodegradable particles loaded with disease-specific antigen, either alone or with immunomodulators, have been reported to ameliorate disease. Herein, we hypothesized that the carrier could impact polarization of the immune cells that associate with particles and the subsequent disease progression. Single injection of three polymeric carriers, 50:50 poly (DL-lactide-co-glycolide) (PLG) with two molecular weights (Low, High) and poly (DL-lactide) (PLA), loaded with the disease-specific antigen, proteolipid protein (PLP139-151), were investigated for the ability to attenuate clinical scores in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. At a low particle dose, mice treated with PLA-based particles had significantly lower clinical scores at the chronic stage of the disease over 200 days post immunization, while neither PLG-based particles nor OVA control particles reduced the clinical scores. Compared to PLG-based particles, PLA-based particles were largely associated with Kupffer cells and liver sinusoidal endothelial cells, which had a reduced co-stimulatory molecule expression that correlated with a reduction of CD4+ T-cell populations in the central nervous system. Delivery of PLA-based particles encapsulated with higher levels of PLP139-151 at a reduced dose were able to completely ameliorate EAE over 200 days along with inhibition of Th1 and Th17 polarization. Collectively, our study demonstrates that the carrier properties and antigen loading determine phenotypes of immune cells in the peripheral organs, influencing the amelioration of both acute and chronic stages of autoimmunity.


Asunto(s)
Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/inmunología , Nanopartículas/química , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Enfermedades Autoinmunes/patología , Linfocitos T CD4-Positivos/metabolismo , Células Cultivadas , Sistemas de Liberación de Medicamentos/métodos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Ratones , Poliésteres/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA