Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 59(24): 9388-9392, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32167645

RESUMEN

The formation of excitons in OLEDs is spin dependent and can be controlled by electron-paramagnetic resonance, affecting device resistance and electroluminescence yield. We explore electrically detected magnetic resonance in the regime of very low magnetic fields (<1 mT). A pronounced feature emerges at zero field in addition to the conventional spin- 1 / 2 Zeeman resonance for which the Larmor frequency matches that of the incident radiation. By comparing a conventional π-conjugated polymer as the active material to a perdeuterated analogue, we demonstrate the interplay between the zero-field feature and local hyperfine fields. The zero-field peak results from a quasistatic magnetic-field effect of the RF radiation for periods comparable to the carrier-pair lifetime. Zeeman resonances are resolved down to 3.2 MHz, approximately twice the Larmor frequency of an electron in Earth's field. However, since reducing hyperfine fields sharpens the Zeeman peak at the cost of an increased zero-field peak, we suggest that this result may constitute a fundamental low-field limit of magnetic resonance in carrier-pair-based systems. OLEDs offer an alternative solid-state platform to investigate the radical-pair mechanism of magnetic-field effects in photochemical reactions, allowing models of biological magnetoreception to be tested by measuring spin decoherence directly in the time domain by pulsed experiments.

2.
Faraday Discuss ; 221(0): 92-109, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31553007

RESUMEN

Certain species of living creatures are known to orientate themselves in the geomagnetic field. Given the small magnitude of approximately 48 µT, the underlying quantum mechanical phenomena are expected to exhibit coherence times in the microsecond regime. In this contribution, we show the sensitivity of organic light-emitting diodes (OLEDs) to magnetic fields far below Earth's magnetic field, suggesting that coherence times of the spins of charge-carrier pairs in these devices can be similarly long. By electron paramagnetic resonance (EPR) experiments, a lower bound for the coherence time can be assessed directly. Moreover, this technique offers the possibility to determine the distribution of hyperfine fields within the organic semiconductor layer. We extend this technique to a material system exhibiting both fluorescence and phosphorescence, demonstrating stable anticorrelation between optically detected magnetic resonance (ODMR) spectra in the singlet (fluorescence) and triplet (phosphorescence) channels. The experiments demonstrate the extreme sensitivity of OLEDs to both static as well as dynamic magnetic fields and suggest that coherent spin precession processes of coulombically bound electron-spin pairs may play a crucial role in the magnetoreceptive ability of living creatures.


Asunto(s)
Modelos Químicos , Teoría Cuántica , Espectroscopía de Resonancia por Spin del Electrón , Fluorescencia , Campos Magnéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA