RESUMEN
Enhancers are cis-regulatory elements that control the establishment of cell identities during development. In mammals, enhancer activation is tightly coupled with DNA demethylation. However, whether this epigenetic remodeling is necessary for enhancer activation is unknown. Here, we adapted single-molecule footprinting to measure chromatin accessibility and transcription factor binding as a function of the presence of methylation on the same DNA molecules. We leveraged natural epigenetic heterogeneity at active enhancers to test the impact of DNA methylation on their chromatin accessibility in multiple cell lineages. Although reduction of DNA methylation appears dispensable for the activity of most enhancers, we identify a class of cell-type-specific enhancers where DNA methylation antagonizes the binding of transcription factors. Genetic perturbations reveal that chromatin accessibility and transcription factor binding require active demethylation at these loci. Thus, in addition to safeguarding the genome from spurious activation, DNA methylation directly controls transcription factor occupancy at active enhancers.
Asunto(s)
Metilación de ADN , Elementos de Facilitación Genéticos , Animales , Cromatina , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Mamíferos/metabolismoRESUMEN
The majority of gene transcripts generated by RNA polymerase II in mammalian genomes initiate at CpG island (CGI) promoters1,2, yet our understanding of their regulation remains limited. This is in part due to the incomplete information that we have on transcription factors, their DNA-binding motifs and which genomic binding sites are functional in any given cell type3-5. In addition, there are orphan motifs without known binders, such as the CGCG element, which is associated with highly expressed genes across human tissues and enriched near the transcription start site of a subset of CGI promoters6-8. Here we combine single-molecule footprinting with interaction proteomics to identify BTG3-associated nuclear protein (BANP) as the transcription factor that binds this element in the mouse and human genome. We show that BANP is a strong CGI activator that controls essential metabolic genes in pluripotent stem and terminally differentiated neuronal cells. BANP binding is repelled by DNA methylation of its motif in vitro and in vivo, which epigenetically restricts most binding to CGIs and accounts for differential binding at aberrantly methylated CGI promoters in cancer cells. Upon binding to an unmethylated motif, BANP opens chromatin and phases nucleosomes. These findings establish BANP as a critical activator of a set of essential genes and suggest a model in which the activity of CGI promoters relies on methylation-sensitive transcription factors that are capable of chromatin opening.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/genética , Cromatina/metabolismo , Islas de CpG/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Animales , Secuencia de Bases , Línea Celular Tumoral , Cromatina/química , Ensamble y Desensamble de Cromatina/genética , Metilación de ADN , Regulación de la Expresión Génica , Genes Esenciales , Humanos , Ratones , Imagen Individual de MoléculaRESUMEN
Cofactors are essential effectors of the transcription control machinery. How this functionally diverse group of factors is used in the genome remains elusive. A recent study by Neumayr, Haberle et al. sheds light on this question, showing that enhancers depend on defined combinations of cofactors for their activation.
Asunto(s)
Elementos de Facilitación Genéticos , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Regiones Promotoras GenéticasRESUMEN
Transcription initiation entails chromatin opening followed by pre-initiation complex formation and RNA polymerase II recruitment. Subsequent polymerase elongation requires additional signals, resulting in increased residence time downstream of the start site, a phenomenon referred to as pausing. Here, we harnessed single-molecule footprinting to quantify distinct steps of initiation in vivo throughout the Drosophila genome. This identifies the impact of promoter structure on initiation dynamics in relation to nucleosomal occupancy. Additionally, perturbation of transcriptional initiation reveals an unexpectedly high turnover of polymerases at paused promoters-an observation confirmed at the level of nascent RNAs. These observations argue that absence of elongation is largely caused by premature termination rather than by stable polymerase stalling. In support of this non-processive model, we observe that induction of the paused heat shock promoter depends on continuous initiation. Our study provides a framework to quantify protein binding at single-molecule resolution and refines concepts of transcriptional pausing.
Asunto(s)
ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , ARN/biosíntesis , Imagen Individual de Molécula , Transcripción Genética , Animales , Sitios de Unión , ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Estudio de Asociación del Genoma Completo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Semivida , Cinética , Unión Proteica , Estabilidad Proteica , Proteolisis , ARN/genética , ARN Polimerasa II/genética , TATA Box , Sitio de Iniciación de la Transcripción , Iniciación de la Transcripción Genética , Terminación de la Transcripción GenéticaRESUMEN
About 7% of the human genome encodes cis-regulatory elements (CREs) that function as regulatory switches to modulate the expression of genes. These short genetic sequences control the complex transcriptional changes necessary for organismal development. A topical challenge in the field is to understand how transcription factors (TFs) read and translate this information into gene expression patterns. Here, I review how the development of single-molecule footprinting (SMF) that resolves the genome occupancy of TFs on individual DNA molecules resolution contributes to our ability to establish how the regulatory genetic information is interpreted at the mechanistic level. I further discuss how future developments in the nascent field of single-molecule genomics (SMG) could impact our understanding of gene regulation mechanisms.
Asunto(s)
Regulación de la Expresión Génica , Genómica/métodos , Elementos Reguladores de la Transcripción , Factores de Transcripción/genética , ADN/genética , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Imagen Individual de Molécula , Factores de Transcripción/metabolismoRESUMEN
Most mammalian RNA polymerase II initiation events occur at CpG islands, which are rich in CpGs and devoid of DNA methylation. Despite their relevance for gene regulation, it is unknown to what extent the CpG dinucleotide itself actually contributes to promoter activity. To address this question, we determined the transcriptional activity of a large number of chromosomally integrated promoter constructs and monitored binding of transcription factors assumed to play a role in CpG island activity. This revealed that CpG density significantly improves motif-based prediction of transcription factor binding. Our experiments also show that high CpG density alone is insufficient for transcriptional activity, yet results in increased transcriptional output when combined with particular transcription factor motifs. However, this CpG contribution to promoter activity is independent of DNA methyltransferase activity. Together, this refines our understanding of mammalian promoter regulation as it shows that high CpG density within CpG islands directly contributes to an environment permissive for full transcriptional activity.
Asunto(s)
Islas de CpG , Metilación de ADN , Regiones Promotoras Genéticas , Activación Transcripcional , Animales , Línea Celular , Células Cultivadas , Ratones , Unión Proteica , Factores de Transcripción/metabolismoRESUMEN
DNA methylation is an epigenetic modification associated with transcriptional repression of promoters and is essential for mammalian development. Establishment of DNA methylation is mediated by the de novo DNA methyltransferases DNMT3A and DNMT3B, whereas DNMT1 ensures maintenance of methylation through replication. Absence of these enzymes is lethal, and somatic mutations in these genes have been associated with several human diseases. How genomic DNA methylation patterns are regulated remains poorly understood, as the mechanisms that guide recruitment and activity of DNMTs in vivo are largely unknown. To gain insights into this matter we determined genomic binding and site-specific activity of the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B. We show that both enzymes localize to methylated, CpG-dense regions in mouse stem cells, yet are excluded from active promoters and enhancers. By specifically measuring sites of de novo methylation, we observe that enzymatic activity reflects binding. De novo methylation increases with CpG density, yet is excluded from nucleosomes. Notably, we observed selective binding of DNMT3B to the bodies of transcribed genes, which leads to their preferential methylation. This targeting to transcribed sequences requires SETD2-mediated methylation of lysine 36 on histone H3 and a functional PWWP domain of DNMT3B. Together these findings reveal how sequence and chromatin cues guide de novo methyltransferase activity to ensure methylome integrity.
Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Epigénesis Genética/genética , Genoma/genética , Animales , Línea Celular , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Islas de CpG/genética , ADN (Citosina-5-)-Metiltransferasas/química , ADN Metiltransferasa 3A , Células Madre Embrionarias/enzimología , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos/genética , Genómica , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Ratones , Regiones Promotoras Genéticas/genética , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Transcripción Genética/genética , ADN Metiltransferasa 3BRESUMEN
Histone acetyltransferase (HAT) complexes are coactivators that are important for transcriptional activation by modifying chromatin. Metazoan SAGA and ATAC are distinct multisubunits complexes that share the same catalytic HAT subunit (GCN5 or PCAF). Here, we show that these human HAT complexes are targeted to different genomic loci representing functionally distinct regulatory elements both at broadly expressed and tissue-specific genes. While SAGA can principally be found at promoters, ATAC is recruited to promoters and enhancers, yet only its enhancer binding is cell-type specific. Furthermore, we show that ATAC functions at a set of enhancers that are not bound by p300, revealing a class of enhancers not yet identified. These findings demonstrate important functional differences between SAGA and ATAC coactivator complexes at the level of the genome and define a role for the ATAC complex in the regulation of a set of enhancers.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Sitios de Unión , ADN Polimerasa II/metabolismo , Elementos de Facilitación Genéticos , Células HeLa , Histona Acetiltransferasas/genética , Humanos , Complejos Multiproteicos , Regiones Promotoras Genéticas , Interferencia de ARN , Transcripción Genética , Transfección , Factores de Transcripción p300-CBP/genéticaRESUMEN
The retina is composed of â¼50 cell-types with specific functions for the process of vision. Identification of the cis-regulatory elements active in retinal cell-types is key to elucidate the networks controlling this diversity. Here, we combined transcriptome and epigenome profiling to map the regulatory landscape of four cell-types isolated from mouse retinas including rod and cone photoreceptors as well as rare inter-neuron populations such as horizontal and starburst amacrine cells. Integration of this information reveals sequence determinants and candidate transcription factors for controlling cellular specialization. Additionally, we refined parallel reporter assays to enable studying the transcriptional activity of large collection of sequences in individual cell-types isolated from a tissue. We provide proof of concept for this approach and its scalability by characterizing the transcriptional capacity of several hundred putative regulatory sequences within individual retinal cell-types. This generates a catalogue of cis-regulatory regions active in retinal cell types and we further demonstrate their utility as potential resource for cellular tagging and manipulation.
Asunto(s)
Elementos Reguladores de la Transcripción/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Retina/citología , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Bastones/citología , Animales , Metilación de ADN/genética , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Transcriptoma/genéticaRESUMEN
All DNA-related processes rely on the degree of chromatin compaction. The highest level of chromatin condensation accompanies transition to mitosis, central for cell cycle progression. Covalent modifications of histones, mainly deacetylation, have been implicated in this transition, which also involves transcriptional repression. Here, we show that the Gcn5-containing histone acetyl transferase complex, Ada Two A containing (ATAC), controls mitotic progression through the regulation of the activity of non-histone targets. RNAi for the ATAC subunits Ada2a/Ada3 results in delayed M/G1 transition and pronounced cell division defects such as centrosome multiplication, defective spindle and midbody formation, generation of binucleated cells and hyperacetylation of histone H4K16 and alpha-tubulin. We show that ATAC localizes to the mitotic spindle and controls cell cycle progression through direct acetylation of Cyclin A/Cdk2. Our data describes a new pathway in which the ATAC complex controls Cyclin A/Cdk2 mitotic function: ATAC/Gcn5-mediated acetylation targets Cyclin A for degradation, which in turn regulates the SIRT2 deacetylase activity. Thus, we have uncovered an essential function for ATAC in regulating Cyclin A activity and consequent mitotic progression.
Asunto(s)
Acetiltransferasas/metabolismo , Mitosis/fisiología , Acetiltransferasas/genética , Secuencia de Aminoácidos , Animales , Ciclina A/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Interferencia de ARN , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismoRESUMEN
In a single experiment, chromatin immunoprecipitation combined with high throughput sequencing (ChIP-seq) provides genome-wide information about a given covalent histone modification or transcription factor occupancy. However, time efficient bioinformatics resources for extracting biological meaning out of these gigabyte-scale datasets are often a limiting factor for data interpretation by biologists. We created an integrated portable ChIP-seq data interpretation platform called seqMINER, with optimized performances for efficient handling of multiple genome-wide datasets. seqMINER allows comparison and integration of multiple ChIP-seq datasets and extraction of qualitative as well as quantitative information. seqMINER can handle the biological complexity of most experimental situations and proposes methods to the user for data classification according to the analysed features. In addition, through multiple graphical representations, seqMINER allows visualization and modelling of general as well as specific patterns in a given dataset. To demonstrate the efficiency of seqMINER, we have carried out a comprehensive analysis of genome-wide chromatin modification data in mouse embryonic stem cells to understand the global epigenetic landscape and its change through cellular differentiation.
Asunto(s)
Inmunoprecipitación de Cromatina , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Algoritmos , Animales , Encéfalo/metabolismo , Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Histonas/metabolismo , Ratones , Regiones Promotoras Genéticas , Programas InformáticosRESUMEN
DNA methylation (5mC) is an essential epigenetic mark associated with transcriptional silencing. The role of 5mC in transcriptional repression is well established for a few hundred genes through methylation of their promoters. Yet, whether 5mC contributes more broadly to gene expression is an important open question. 5mC removal has recently been associated with the activation of enhancers, opening the possibility that 5mC may globally contribute to the expression of genes defining cell identities. Here, we will review the evidence and molecular mechanisms that link 5mC with the activity of enhancers. We will discuss the spread and amplitude of the potential gene expression changes controlled by 5mC at enhancers, and how these may contribute to the determination of cell identities during development.
Asunto(s)
Metilación de ADN , Epigénesis Genética , Expresión Génica , Regiones Promotoras Genéticas , EpigenómicaRESUMEN
BACKGROUND: Transcription regulation in pluripotent embryonic stem (ES) cells is a complex process that involves multitude of regulatory layers, one of which is post-translational modification of histones. Acetylation of specific lysine residues of histones plays a key role in regulating gene expression. RESULTS: Here we have investigated the genome-wide occurrence of two histone marks, acetylation of histone H3K9 and K14 (H3K9ac and H3K14ac), in mouse embryonic stem (mES) cells. Genome-wide H3K9ac and H3K14ac show very high correlation between each other as well as with other histone marks (such as H3K4me3) suggesting a coordinated regulation of active histone marks. Moreover, the levels of H3K9ac and H3K14ac directly correlate with the CpG content of the promoters attesting the importance of sequences underlying the specifically modified nucleosomes. Our data provide evidence that H3K9ac and H3K14ac are also present over the previously described bivalent promoters, along with H3K4me3 and H3K27me3. Furthermore, like H3K27ac, H3K9ac and H3K14ac can also differentiate active enhancers from inactive ones. Although, H3K9ac and H3K14ac, a hallmark of gene activation exhibit remarkable correlation over active and bivalent promoters as well as distal regulatory elements, a subset of inactive promoters is selectively enriched for H3K14ac. CONCLUSIONS: Our study suggests that chromatin modifications, such as H3K9ac and H3K14ac, are part of the active promoter state, are present over bivalent promoters and active enhancers and that the extent of H3K9 and H3K14 acetylation could be driven by cis regulatory elements such as CpG content at promoters. Our study also suggests that a subset of inactive promoters is selectively and specifically enriched for H3K14ac. This observation suggests that histone acetyl transferases (HATs) prime inactive genes by H3K14ac for stimuli dependent activation. In conclusion our study demonstrates a wider role for H3K9ac and H3K14ac in gene regulation than originally thought.
Asunto(s)
Células Madre Embrionarias/metabolismo , Histonas/metabolismo , Regiones Promotoras Genéticas/genética , Elementos Reguladores de la Transcripción/genética , Acetilación , Animales , Islas de CpG/genética , Epigenómica , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , RatonesRESUMEN
The Ada-Two-A-containing (ATAC) histone acetyltransferase and Mediator coactivator complexes regulate independent and distinct steps during transcription initiation and elongation. Here, we report the identification of a new stable molecular assembly formed between the ATAC and Mediator complexes in mouse embryonic stem cells. Moreover, we identify leucine zipper motif-containing protein 1 as a subunit of this meta-coactivator complex (MECO). Finally, we demonstrate that the MECO regulates a subset of RNA polymerase II-transcribed non-coding RNA genes. Our findings establish that transcription coactivator complexes can form stable subcomplexes to facilitate their combined actions on specific target genes.
Asunto(s)
Quimiocinas C/metabolismo , Complejo Mediador/metabolismo , Complejos Multiproteicos/metabolismo , ARN no Traducido/genética , Animales , Células Cultivadas , Quimiocinas C/química , Quimiocinas C/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos/citología , Fibroblastos/fisiología , Regulación de la Expresión Génica , Leucina Zippers , Espectrometría de Masas , Complejo Mediador/química , Complejo Mediador/genética , Ratones , Ratones Noqueados , Péptidos/genética , Péptidos/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismoRESUMEN
Genomic imprinting is regulated by parental-specific DNA methylation of imprinting control regions (ICRs). Despite an identical DNA sequence, ICRs can exist in two distinct epigenetic states that are memorized throughout unlimited cell divisions and reset during germline formation. Here, we systematically study the genetic and epigenetic determinants of this epigenetic bistability. By iterative integration of ICRs and related DNA sequences to an ectopic location in the mouse genome, we first identify the DNA sequence features required for maintenance of epigenetic states in embryonic stem cells. The autonomous regulatory properties of ICRs further enabled us to create DNA-methylation-sensitive reporters and to screen for key components involved in regulating their epigenetic memory. Besides DNMT1, UHRF1 and ZFP57, we identify factors that prevent switching from methylated to unmethylated states and show that two of these candidates, ATF7IP and ZMYM2, are important for the stability of DNA and H3K9 methylation at ICRs in embryonic stem cells.
Asunto(s)
Metilación de ADN , Impresión Genómica , Ratones , Animales , Secuencia de Bases , Metilación de ADN/genética , Epigenómica , Cromatina/genética , Proteínas Represoras/genéticaRESUMEN
Precise control of gene expression requires the coordinated action of multiple factors at cis-regulatory elements. We recently developed single-molecule footprinting to simultaneously resolve the occupancy of multiple proteins including transcription factors, RNA polymerase II and nucleosomes on single DNA molecules genome-wide. The technique combines the use of cytosine methyltransferases to footprint the genome with bisulfite sequencing to resolve transcription factor binding patterns at cis-regulatory elements. DNA footprinting is performed by incubating permeabilized nuclei with recombinant methyltransferases. Upon DNA extraction, whole-genome or targeted bisulfite libraries are prepared and loaded on Illumina sequencers. The protocol can be completed in 4-5 d in any laboratory with access to high-throughput sequencing. Analysis can be performed in 2 d using a dedicated R package and requires access to a high-performance computing system. Our method can be used to analyze how transcription factors cooperate and antagonize to regulate transcription.
Asunto(s)
Huella de ADN/métodos , Metilasas de Modificación del ADN/metabolismo , ADN/metabolismo , Genoma , Imagen Individual de Molécula/métodos , Factores de Transcripción/metabolismo , Animales , Núcleo Celular/metabolismo , ADN/genética , Metilasas de Modificación del ADN/genética , Regulación de la Expresión Génica , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Nucleosomas/química , Nucleosomas/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Análisis de Secuencia de ADN/estadística & datos numéricos , Programas Informáticos , Factores de Transcripción/genéticaRESUMEN
DNA methylation is considered a stable epigenetic mark, yet methylation patterns can vary during differentiation and in diseases such as cancer. Local levels of DNA methylation result from opposing enzymatic activities, the rates of which remain largely unknown. Here we developed a theoretical and experimental framework enabling us to infer methylation and demethylation rates at 860,404 CpGs in mouse embryonic stem cells. We find that enzymatic rates can vary as much as two orders of magnitude between CpGs with identical steady-state DNA methylation. Unexpectedly, de novo and maintenance methylation activity is reduced at transcription factor binding sites, while methylation turnover is elevated in transcribed gene bodies. Furthermore, we show that TET activity contributes substantially more than passive demethylation to establishing low methylation levels at distal enhancers. Taken together, our work unveils a genome-scale map of methylation kinetics, revealing highly variable and context-specific activity for the DNA methylation machinery.
Asunto(s)
Islas de CpG/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Desmetilación del ADN , Metilación de ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Sitios de Unión/genética , Línea Celular , Mapeo Cromosómico , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Dioxigenasas/metabolismo , Epigénesis Genética/genética , Genoma/genética , Histonas/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética , ADN Metiltransferasa 3BRESUMEN
Targeting genes to specific neuronal or glial cell types is valuable for both understanding and repairing brain circuits. Adeno-associated viruses (AAVs) are frequently used for gene delivery, but targeting expression to specific cell types is an unsolved problem. We created a library of 230 AAVs, each with a different synthetic promoter designed using four independent strategies. We show that a number of these AAVs specifically target expression to neuronal and glial cell types in the mouse and non-human primate retina in vivo and in the human retina in vitro. We demonstrate applications for recording and stimulation, as well as the intersectional and combinatorial labeling of cell types. These resources and approaches allow economic, fast and efficient cell-type targeting in a variety of species, both for fundamental science and for gene therapy.
Asunto(s)
Dependovirus/genética , Marcación de Gen/métodos , Neuroglía/virología , Neuronas/virología , Animales , Técnicas de Transferencia de Gen , Humanos , Macaca fascicularis , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas/genética , Retina/virologíaRESUMEN
The majority of mammalian promoters are CpG islands; regions of high CG density that require protection from DNA methylation to be functional. Importantly, how sequence architecture mediates this unmethylated state remains unclear. To address this question in a comprehensive manner, we developed a method to interrogate methylation states of hundreds of sequence variants inserted at the same genomic site in mouse embryonic stem cells. Using this assay, we were able to quantify the contribution of various sequence motifs towards the resulting DNA methylation state. Modeling of this comprehensive dataset revealed that CG density alone is a minor determinant of their unmethylated state. Instead, these data argue for a principal role for transcription factor binding sites, a prediction confirmed by testing synthetic mutant libraries. Taken together, these findings establish the hierarchy between the two cis-encoded mechanisms that define the DNA methylation state and thus the transcriptional competence of CpG islands.
Asunto(s)
Islas de CpG/genética , Metilación de ADN/genética , Ingeniería Genética/métodos , Genoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Animales , Secuencia de Bases , Diferenciación Celular/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Biblioteca de Genes , Humanos , Mamíferos/genética , Ratones , Modelos Genéticos , Unión Proteica , Recombinasas/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Chromatin immunoprecipitation coupled high-throughput sequencing (ChIP-seq) is a common method to study in vivo protein-DNA interactions at the genome-wide level. The processing, analysis, and biological interpretation of gigabyte datasets, generated by several ChIP-seq runs, is a challenging task for biologists. The seqMINER platform has been designed to handle, compare, and visualize different sequencing datasets in a user-friendly way. Different analysis methods are applied to understand common and specific binding patterns of single or multiple datasets to answer complex biological questions. Here, we give a detailed protocol about the different analysis modules implemented in the recent version of seqMINER.