Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mar Drugs ; 20(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36286436

RESUMEN

The widespread resistance to antibiotics in pathogenic bacteria makes the development of a new generation of antimicrobials an urgent task. The development of new antibiotics must be accompanied by a comprehensive study of all of their biological activities in order to avoid adverse side-effects from their application. Some promising antibiotic prototypes derived from the structures of arenicins, antimicrobial peptides from the lugworm Arenicola marina, have been developed. Previously, we described the ability of natural arenicins -1 and -2 to modulate the human complement system activation in vitro. In this regard, it seems important to evaluate the effect of therapeutically promising arenicin analogues on complement activation. Here, we describe the complement-modulating activity of three such analogues, Ar-1[V8R], ALP1, and AA139. We found that the mode of action of Ar-1[V8R] and ALP1 on the complement was similar to that of natural arenicins, which can both activate and inhibit the complement, depending on the concentration. However, Ar-1[V8R] behaved predominantly as an inhibitor, showing only a moderate increase in C3a production in the alternative pathway model and no enhancement at all of the classical pathway of complement activation. In contrast, the action of ALP1 was characterized by a marked increase in the complement activation through the classical pathway in the concentration range of 2.5-20 µg/mL. At the same time, at higher concentrations (80-160 µg/mL), this peptide exhibited a complement inhibitory effect characteristic of the other arenicins. Peptide AA139, like other arenicins, exhibited an inhibitory effect on complement at a concentration of 160 µg/mL, but was much less pronounced. Overall, our results suggest that the effect on the complement system should be taken into account in the development of antibiotics based on arenicins.


Asunto(s)
Poliquetos , Animales , Humanos , Poliquetos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Estudios Prospectivos , Proteínas del Helminto/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Activación de Complemento
2.
Mar Drugs ; 18(12)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321960

RESUMEN

Antimicrobial peptides (AMPs) are not only cytotoxic towards host pathogens or cancer cells but also are able to act as immunomodulators. It was shown that some human and non-human AMPs can interact with complement proteins and thereby modulate complement activity. Thus, AMPs could be considered as the base for complement-targeted therapeutics development. Arenicins from the sea polychaete Arenicola marina, the classical example of peptides with a ß-hairpin structure stabilized by a disulfide bond, were shown earlier to be among the most prospective regulators. Here, we investigate the link between arenicins' structure and their antimicrobial, hemolytic and complement-modulating activities using the derivative Ar-1-(C/A) without a disulfide bond. Despite the absence of this bond, the peptide retains all important functional activities and also appears less hemolytic in comparison with the natural forms. These findings could help to investigate new complement drugs for regulation using arenicin derivatives.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Activación de Complemento/efectos de los fármacos , Inactivadores del Complemento/farmacología , Proteínas del Helminto/farmacología , Animales , Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/toxicidad , Inactivadores del Complemento/química , Inactivadores del Complemento/toxicidad , Eritrocitos/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Proteínas del Helminto/química , Proteínas del Helminto/toxicidad , Hemólisis/efectos de los fármacos , Humanos , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo , Conformación Proteica , Conejos , Oveja Doméstica , Relación Estructura-Actividad
3.
Mar Drugs ; 16(12)2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30513754

RESUMEN

Antimicrobial peptides from marine invertebrates are known not only to act like cytotoxic agents, but they also can display some additional activities in mammalian organisms. In particular, these peptides can modulate the complement system as was described for tachyplesin, a peptide from the horseshoe crab. In this work, we investigated the influence on complement activation of the antimicrobial peptide arenicin-1 from the marine polychaete Arenicola marina. To study effects of arenicin on complement activation in human blood serum, we used hemolytic assays of two types, with antibody sensitized sheep erythrocytes and rabbit erythrocytes. Complement activation was also assessed, by the level of C3a production that was measured by ELISA. We found that the effect of arenicin depends on its concentration. At relatively low concentrations the peptide stimulates complement activation and lysis of target erythrocytes, whereas at higher concentrations arenicin acts as a complement inhibitor. A hypothetical mechanism of peptide action is proposed, suggesting its interaction with two complement proteins, C1q and C3. The results lead to the possibility of the development of new approaches for therapy of diseases connected with complement dysregulation, using peptide regulators derived from natural antimicrobial peptides of invertebrates.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Activación de Complemento/efectos de los fármacos , Proteínas del Helminto/farmacología , Poliquetos , Unión Proteica/efectos de los fármacos , Animales , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Complemento C1q/agonistas , Complemento C1q/antagonistas & inhibidores , Complemento C1q/inmunología , Complemento C1q/metabolismo , Complemento C3/agonistas , Complemento C3/antagonistas & inhibidores , Complemento C3/inmunología , Complemento C3/metabolismo , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática , Eritrocitos/efectos de los fármacos , Eritrocitos/inmunología , Eritrocitos/metabolismo , Proteínas del Helminto/aislamiento & purificación , Hemólisis/efectos de los fármacos , Humanos , Conejos , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA