Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 360, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992657

RESUMEN

Inhibitory phosphatases, such as the inositol-5-phosphatase SHIP1 could potentially contribute to B-cell acute lymphoblastic leukemia (B-ALL) by raising the threshold for activation of the autoimmunity checkpoint, allowing malignant cells with strong oncogenic B-cell receptor signaling to escape negative selection. Here, we show that SHIP1 is differentially expressed across B-ALL subtypes and that high versus low SHIP1 expression is associated with specific B-ALL subgroups. In particular, we found high SHIP1 expression in both, Philadelphia chromosome (Ph)-positive and ETV6-RUNX1-rearranged B-ALL cells. As demonstrated by targeted knockdown of SHIP1 by RNA interference, proliferation of B-ALL cells in vitro and their tumorigenic spread in vivo depended in part on SHIP1 expression. We investigated the regulation of SHIP1, as an important antagonist of the AKT signaling pathway, by the B-cell-specific transcription factor Ikaros. Targeted restoration of Ikaros and pharmacological inhibition of the antagonistic casein kinase 2, led to a strong reduction in SHIP1 expression and at the same time to a significant inhibition of AKT activation and cell growth. Importantly, the tumor suppressive function of Ikaros was enhanced by a SHIP1-dependent additive effect. Furthermore, our study shows that all three AKT isoforms contribute to the pro-mitogenic and anti-apoptotic signaling in B-ALL cells. Conversely, hyperactivation of a single AKT isoform is sufficient to induce negative selection by increased oxidative stress. In summary, our study demonstrates the regulatory function of Ikaros on SHIP1 expression in B-ALL and highlights the relevance of sustained SHIP1 expression to prevent cells with hyperactivated PI3K/AKT/mTOR signaling from undergoing negative selection.


Asunto(s)
Linfocitos B , Factor de Transcripción Ikaros , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Humanos , Linfocitos B/metabolismo , Línea Celular Tumoral , Proliferación Celular , Animales , Ratones
2.
Mar Drugs ; 20(10)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36286421

RESUMEN

N-methylpretrichodermamide B (NB) is a biologically active epidithiodiketopiperazine isolated from several strains of the algae-derived fungus Penicillium sp. Recently, we reported the first data on its activity in human cancer cells lines in vitro. Here, we investigated the activity, selectivity, and mechanism of action of NB in human prostate cancer cell lines, including drug-resistant subtypes. NB did not reveal cross-resistance to docetaxel in the PC3-DR cell line model and was highly active in hormone-independent 22Rv1 cells. NB-induced cell death was stipulated by externalization of phosphatidylserine and activation of caspase-3. Moreover, inhibition of caspase activity by z-VAD(OMe)-fmk did not affect NB cytotoxicity, suggesting a caspase-independent cell death induced by NB. The compound has a moderate p-glycoprotein (p-gp) substrate-like affinity and can simultaneously inhibit p-gp at nanomolar concentrations. Therefore, NB resensitized p-gp-overexpressing PC3-DR cells to docetaxel. A kinome profiling of the NB-treated cells revealed, among other things, an induction of mitogen-activated protein kinases JNK1/2 and p38. Further functional analysis confirmed an activation of both kinases and indicated a prosurvival role of this biological event in the cellular response to the treatment. Overall, NB holds promising anticancer potential and further structure-activity relationship studies and structural optimization are needed in order to improve its biological properties.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata , Humanos , Masculino , Antineoplásicos/farmacología , Apoptosis , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/farmacología , Caspasa 3/metabolismo , Línea Celular Tumoral , Docetaxel/farmacología , Resistencia a Antineoplásicos , Hormonas/farmacología , Fosfatidilserinas/farmacología , Neoplasias de la Próstata/tratamiento farmacológico
3.
Int J Cancer ; 149(5): 1166-1180, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33890294

RESUMEN

Signal transduction via protein kinases is of central importance in cancer biology and treatment. However, the clinical success of kinase inhibitors is often hampered by a lack of robust predictive biomarkers, which is also caused by the discrepancy between kinase expression and activity. Therefore, there is a need for functional tests to identify aberrantly activated kinases in individual patients. Here we present a systematic analysis of the tyrosine kinases in head and neck cancer using such a test-functional kinome profiling. We detected increased tyrosine kinase activity in tumors compared with their corresponding normal tissue. Moreover, we identified members of the family of Src kinases (Src family kinases [SFK]) to be aberrantly activated in the majority of the tumors, which was confirmed by additional methods. We could also show that SFK hyperphosphorylation is associated with poor prognosis, while inhibition of SFK impaired cell proliferation, especially in cells with hyperactive SFK. In summary, functional kinome profiling identified SFK to be frequently hyperactivated in head and neck squamous cell carcinoma. SFK may therefore be potential therapeutic targets. These results furthermore demonstrate how functional tests help to increase our understanding of cancer biology and support the expansion of precision oncology.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de Cabeza y Cuello/patología , Familia-src Quinasas/metabolismo , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Fosforilación , Pronóstico , Inhibidores de Proteínas Quinasas/farmacología , Estudios Retrospectivos , Tasa de Supervivencia , Análisis de Matrices Tisulares , Células Tumorales Cultivadas , Familia-src Quinasas/antagonistas & inhibidores
4.
Mar Drugs ; 18(12)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271756

RESUMEN

Efficacy and mechanism of action of marine alkaloid 3,10-dibromofascaplysin (DBF) were investigated in human prostate cancer (PCa) cells harboring different levels of drug resistance. Anticancer activity was observed across all cell lines examined without signs of cross-resistance to androgen receptor targeting agents (ARTA) or taxane based chemotherapy. Kinome analysis followed by functional investigation identified JNK1/2 to be one of the molecular targets of DBF in 22Rv1 cells. In contrast, no activation of p38 and ERK1/2 MAPKs was observed. Inhibition of the drug-induced JNK1/2 activation or of the basal p38 activity resulted in increased cytotoxicity of DBF, whereas an active ERK1/2 was identified to be important for anticancer activity of the alkaloid. Synergistic effects of DBF were observed in combination with PARP-inhibitor olaparib most likely due to the induction of ROS production by the marine alkaloid. In addition, DBF intensified effects of platinum-based drugs cisplatin and carboplatin, and taxane derivatives docetaxel and cabazitaxel. Finally, DBF inhibited AR-signaling and resensitized AR-V7-positive 22Rv1 prostate cancer cells to enzalutamide, presumably due to AR-V7 down-regulation. These findings propose DBF to be a promising novel drug candidate for the treatment of human PCa regardless of resistance to standard therapy.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Resistencia a Antineoplásicos , Oxindoles/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Humanos , Masculino , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Células PC-3 , Fosforilación , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/patología , Especies Reactivas de Oxígeno/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal
5.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255816

RESUMEN

In this study, we aimed at the application of the concept of photopharmacology to the approved vascular endothelial growth factor receptor (VEGFR)-2 kinase inhibitor axitinib. In a previous study, we found out that the photoisomerization of axitinib's stilbene-like double bond is unidirectional in aqueous solution due to a competing irreversible [2+2]-cycloaddition. Therefore, we next set out to azologize axitinib by means of incorporating azobenzenes as well as diazocine moieties as photoresponsive elements. Conceptually, diazocines (bridged azobenzenes) show favorable photoswitching properties compared to standard azobenzenes because the thermodynamically stable Z-isomer usually is bioinactive, and back isomerization from the bioactive E-isomer occurs thermally. Here, we report on the development of different sulfur-diazocines and carbon-diazocines attached to the axitinib pharmacophore that allow switching the VEGFR-2 activity reversibly. For the best sulfur-diazocine, we could verify in a VEGFR-2 kinase assay that the Z-isomer is biologically inactive (IC50 >> 10,000 nM), while significant VEGFR-2 inhibition can be observed after irradiation with blue light (405 nm), resulting in an IC50 value of 214 nM. In summary, we could successfully develop reversibly photoswitchable kinase inhibitors that exhibit more than 40-fold differences in biological activities upon irradiation. Moreover, we demonstrate the potential advantage of diazocine photoswitches over standard azobenzenes.


Asunto(s)
Axitinib/química , Compuestos Azo/farmacología , Neoplasias/tratamiento farmacológico , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Axitinib/farmacología , Compuestos Azo/química , Carbono/química , Humanos , Isomerismo , Luz , Neoplasias/genética , Procesos Fotoquímicos/efectos de los fármacos , Estilbenos/química , Azufre/química , Termodinámica , Receptor 1 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Agua/química
7.
Recent Results Cancer Res ; 198: 1-24, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27318679

RESUMEN

Cellular chromosomal DNA is the principal target through which ionising radiation exerts it diverse biological effects. This chapter summarises the relevant DNA damage signalling and repair pathways used by normal and tumour cells in response to irradiation. Strategies for tumour radiosensitisation are reviewed which exploit tumour-specific DNA repair deficiencies or signalling pathway addictions, with a special focus on growth factor signalling, PARP, cancer stem cells, cell cycle checkpoints and DNA replication. This chapter concludes with a discussion of DNA repair-related candidate biomarkers of tumour response which are of crucial importance for implementing precision medicine in radiation oncology.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de la radiación , Daño del ADN , Reparación del ADN , Neoplasias/radioterapia , Replicación del ADN/genética , Replicación del ADN/efectos de la radiación , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Redes Reguladoras de Genes/efectos de la radiación , Humanos , Modelos Genéticos , Neoplasias/genética , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación
8.
J Immunol ; 190(3): 1113-24, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23284053

RESUMEN

The hepatitis C virus (HCV) nonstructural (NS) 5A protein has been shown to promote viral persistence by interfering with both innate and adaptive immunity. At the same time, the HCV NS5A protein has been suggested as a target for antiviral therapy. In this study, we performed a detailed characterization of HCV NS5A immunogenicity in wild-type (wt) and immune tolerant HCV NS5A-transgenic (Tg) C57BL/6J mice. We evaluated how efficiently HCV NS5A-based genetic vaccines could activate strong T cell responses. Truncated and full-length wt and synthetic codon-optimized NS5A genotype 1b genes were cloned into eukaryotic expression plasmids, and the immunogenicity was determined after i.m. immunization in combination with in vivo electroporation. The NS5A-based genetic vaccines primed high Ab levels, with IgG titers of >10(4) postimmunization. With respect to CD8(+) T cell responses, the coNS5A gene primed more potent IFN-γ-producing and lytic cytotoxic T cells in wt mice compared with NS5A-Tg mice. In addition, high frequencies of NS5A-specific CD8(+) T cells were found in wt mice after a single immunization. To test the functionality of the CTL responses, the ability to inhibit growth of NS5A-expressing tumor cells in vivo was analyzed after immunization. A single dose of coNS5A primed tumor-inhibiting responses in both wt and NS5A-Tg mice. Finally, immunization with the coNS5A gene primed polyfunctional NS5A-specific CD8(+) T cell responses. Thus, the coNS5A gene is a promising therapeutic vaccine candidate for chronic HCV infections.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , ADN Viral/inmunología , Hepacivirus/inmunología , Vacunas de ADN/inmunología , Vacunas contra Hepatitis Viral/inmunología , Proteínas no Estructurales Virales/inmunología , Animales , Especificidad de Anticuerpos , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/metabolismo , Vacunas contra el Cáncer , Codón/genética , Citotoxicidad Inmunológica , ADN Viral/síntesis química , ADN Viral/genética , Genes Sintéticos , Antígenos H-2/inmunología , Hepacivirus/genética , Anticuerpos contra la Hepatitis C/biosíntesis , Anticuerpos contra la Hepatitis C/genética , Anticuerpos contra la Hepatitis C/inmunología , Inmunización , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Activación de Linfocitos , Linfocinas/metabolismo , Linfoma no Hodgkin/inmunología , Linfoma no Hodgkin/terapia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Especificidad del Receptor de Antígeno de Linfocitos T , Linfocitos T Citotóxicos/inmunología , Vacunas contra Hepatitis Viral/uso terapéutico , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
9.
Nucleic Acids Res ; 40(22): 11363-79, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23034801

RESUMEN

Survival time-associated plant homeodomain (PHD) finger protein in Ovarian Cancer 1 (SPOC1, also known as PHF13) is known to modulate chromatin structure and is essential for testicular stem-cell differentiation. Here we show that SPOC1 is recruited to DNA double-strand breaks (DSBs) in an ATM-dependent manner. Moreover, SPOC1 localizes at endogenous repair foci, including OPT domains and accumulates at large DSB repair foci characteristic for delayed repair at heterochromatic sites. SPOC1 depletion enhances the kinetics of ionizing radiation-induced foci (IRIF) formation after γ-irradiation (γ-IR), non-homologous end-joining (NHEJ) repair activity, and cellular radioresistance, but impairs homologous recombination (HR) repair. Conversely, SPOC1 overexpression delays IRIF formation and γH2AX expansion, reduces NHEJ repair activity and enhances cellular radiosensitivity. SPOC1 mediates dose-dependent changes in chromatin association of DNA compaction factors KAP-1, HP1-α and H3K9 methyltransferases (KMT) GLP, G9A and SETDB1. In addition, SPOC1 interacts with KAP-1 and H3K9 KMTs, inhibits KAP-1 phosphorylation and enhances H3K9 trimethylation. These findings provide the first evidence for a function of SPOC1 in DNA damage response (DDR) and repair. SPOC1 acts as a modulator of repair kinetics and choice of pathways. This involves its dose-dependent effects on DNA damage sensors, repair mediators and key regulators of chromatin structure.


Asunto(s)
Cromatina/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Línea Celular , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Rayos gamma , Heterocromatina , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Tolerancia a Radiación , Reparación del ADN por Recombinación , Proteínas Represoras/metabolismo , Proteína 28 que Contiene Motivos Tripartito
10.
Cancers (Basel) ; 16(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38927982

RESUMEN

BACKGROUND: Remarkable differences exist in the outcome of systemic cancer therapies. Lymphomas and leukemias generally respond well to systemic chemotherapies, while solid cancers often fail. We engineered different human cancer cells lines to uniformly express a modified herpes simplex virus thymidine kinase TK.007 as a suicide gene when ganciclovir (GCV) is applied, thus in theory achieving a similar response in all cell lines. METHODS: Fifteen different cell lines were engineered to express the TK.007 gene. XTT-cell proliferation assays were performed and the IC50-values were calculated. Functional kinome profiling, mRNA sequencing, and bottom-up proteomics analysis with Ingenuity pathway analysis were performed. RESULTS: GCV potency varied among cell lines, with lymphoma and leukemia cells showing higher susceptibility than solid cancer cells. Functional kinome profiling implies a contribution of the SRC family kinases and decreased overall kinase activity. mRNA sequencing highlighted alterations in the MAPK pathways and bottom-up proteomics showed differences in apoptotic and epithelial junction signaling proteins. CONCLUSIONS: The histogenetic origin of cells influenced the susceptibility of human malignant cells towards cytotoxic agents with leukemias and lymphomas being more sensitive than solid cancer cells.

11.
Neuro Oncol ; 26(3): 503-513, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-37818983

RESUMEN

BACKGROUND: The IDH-wildtype glioblastoma (GBM) patients have a devastating prognosis. Here, we analyzed the potential prognostic value of global DNA methylation of the tumors. METHODS: DNA methylation of 492 primary samples and 31 relapsed samples, each treated with combination therapy, and of 148 primary samples treated with radiation alone were compared with patient survival. We determined the mean methylation values and estimated the immune cell infiltration from the methylation data. Moreover, the mean global DNA methylation of 23 GBM cell lines was profiled and correlated to their cellular radiosensitivity as measured by colony formation assay. RESULTS: High mean DNA methylation levels correlated with improved survival, which was independent from known risk factors (MGMT promoter methylation, age, extent of resection; P = 0.009) and methylation subgroups. Notably, this correlation was also independent of immune cell infiltration, as higher number of immune cells indeed was associated with significantly better OS but lower mean methylation. Radiosensitive GBM cell lines had a significantly higher mean methylation than resistant lines (P = 0.007), and improved OS of patients treated with radiotherapy alone was also associated with higher DNA methylation (P = 0.002). Furthermore, specimens of relapsed GBM revealed a significantly lower mean DNA methylation compared to the matching primary tumor samples (P = 0.041). CONCLUSIONS: Our results indicate that mean global DNA methylation is independently associated with outcome in glioblastoma. The data also suggest that a higher DNA methylation is associated with better radiotherapy response and less aggressive phenotype, both of which presumably contribute to the observed correlation with OS.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Pronóstico , Metilación de ADN , Metilasas de Modificación del ADN/genética , Proteínas Supresoras de Tumor/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/radioterapia , Enzimas Reparadoras del ADN/genética
12.
Mol Oncol ; 18(1): 62-90, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37849446

RESUMEN

Hematogenous metastasis limits the survival of colorectal cancer (CRC) patients. Here, we illuminated the roles of CD44 isoforms in this process. Isoforms 3 and 4 were predominantly expressed in CRC patients. CD44 isoform 4 indicated poor outcome and correlated with epithelial-mesenchymal transition (EMT) and decreased oxidative phosphorylation (OxPhos) in patients; opposite associations were found for isoform 3. Pan-CD44 knockdown (kd) independently impaired primary tumor formation and abrogated distant metastasis in CRC xenografts. The xenograft tumors mainly expressed the clinically relevant CD44 isoforms 3 and 4. Both isoforms were enhanced in the paranecrotic, hypoxic tumor regions but were generally absent in lung metastases. Upon CD44 kd, tumor angiogenesis was increased in the paranecrotic areas, accompanied by reduced hypoxia-inducible factor-1α and CEACAM5 but increased E-cadherin expression. Mitochondrial genes and proteins were induced upon pan-CD44 kd, as were OxPhos genes. Hypoxia increased VEGF release from tumor spheres, particularly upon CD44 kd. Genes affected upon CD44 kd in xenografts specifically overlapped concordantly with genes correlating with CD44 isoform 4 (but not isoform 3) in patients, validating the clinical relevance of the used model and highlighting the metastasis-promoting role of CD44 isoform 4.


Asunto(s)
Angiogénesis , Neoplasias Colorrectales , Humanos , Xenoinjertos , Línea Celular Tumoral , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/genética , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Hipoxia/genética , Regulación Neoplásica de la Expresión Génica
13.
Sci Rep ; 14(1): 11788, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783016

RESUMEN

Fascaplysin is a red cytotoxic pigment with anticancer properties isolated from the marine sponge Fascaplysinopsis sp. Recently, structure-activity relationship analysis reported by our group suggested that selective cytotoxicity of fascaplysin derivatives towards tumor cells negatively correlates with their ability to intercalate into DNA. To validate this hypothesis, we synthesized 6- and 7-tert-butylfascaplysins which reveal mitigated DNA-intercalating properties. These derivatives were found to be strongly cytotoxic to drug-resistant human prostate cancer cells, albeit did not demonstrate improved selectivity towards cancer cells when compared to fascaplysin. At the same time, kinome analysis suggested an activation of CHK1/ATR axis in cancer cells shortly after the drug exposure. Further experiments revealed induction of replication stress that is eventually converted to the toxic DNA double-strand breaks, resulting in caspase-independent apoptosis-like cell death. Our observations highlight new DNA-targeting effect of some fascaplysin derivatives and indicate more complex structure-activity relationships within the fascaplysin family, suggesting that cytotoxicity and selectivity of these alkaloids are influenced by multiple factors. Furthermore, combination with clinically-approved inhibitors of ATR/CHK1 as well as testing in tumors particularly sensitive to the DNA damage should be considered in further studies.


Asunto(s)
Antineoplásicos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Humanos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Indoles/farmacología , Indoles/química , Apoptosis/efectos de los fármacos , Relación Estructura-Actividad , Masculino , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , ADN/metabolismo , Animales , Roturas del ADN de Doble Cadena/efectos de los fármacos , Compuestos de Amonio Cuaternario , Carbolinas , Indolizinas
14.
Head Neck ; 45(1): 147-155, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36285353

RESUMEN

BACKGROUND: We have recently shown a frequent upregulation of Src-family kinases (SFK) in head and neck squamous cell carcinoma (HNSCC). Here we tested, if SFK targeting is effective especially in HNSCC cells with upregulated SFK signaling. METHODS: The impact of SFK inhibitors SU6656, PP2 and dasatinib on three HNSCC cell lines with different SFK activity levels was analyzed using proliferation and colony formation assays, Western blot and functional kinomics. RESULTS: Proliferation was blocked by all inhibitors in a micro-molar range. With respect to cell kill, dasatinib was most effective, while SU6656 showed moderate and PP2 minor effects. Cellular signaling was affected differently, with PP2 having no effect on SFK signaling while dasatinib probably has non-SFK specific effects. Only SU6656 showed clear SFK specific effects on signaling. CONCLUSION: The results demonstrate potential benefit of SFK inhibition in HNSCC but they also highlight challenges due to non-specificities of the different drugs.


Asunto(s)
Neoplasias de Cabeza y Cuello , Familia-src Quinasas , Humanos , Dasatinib/farmacología , Familia-src Quinasas/metabolismo , Pirimidinas/farmacología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular Tumoral
15.
Cells ; 12(13)2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37443832

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common cause of cancer-related death in children. Despite significantly increased chances of cure, especially for high-risk ALL patients, it still represents a poor prognosis for a substantial fraction of patients. Misregulated proteins in central switching points of the cellular signaling pathways represent potentially important therapeutic targets. Recently, the inositol phosphatase SHIP1 (SH2-containing inositol 5-phosphatase) has been considered as a tumor suppressor in leukemia. SHIP1 serves as an important negative regulator of the PI3K/AKT signaling pathway, which is frequently constitutively activated in primary T-ALL. In contrast to other reports, we show for the first time that SHIP1 has not been lost in T-ALL cells, but is strongly downregulated. Reduced expression of SHIP1 leads to an increased activation of the PI3K/AKT signaling pathway. SHIP1-mRNA expression is frequently reduced in primary T-ALL samples, which is recapitulated by the decrease in SHIP1 expression at the protein level in seven out of eight available T-ALL patient samples. In addition, we investigated the change in the activity profile of tyrosine and serine/threonine kinases after the restoration of SHIP1 expression in Jurkat T-ALL cells. The tyrosine kinase receptor subfamilies of NTRK and PDGFR, which are upregulated in T-ALL subgroups with low SHIP1 expression, are significantly disabled after SHIP1 reconstitution. Lentiviral-mediated reconstitution of SHIP1 expression in Jurkat cells points to a decreased cellular proliferation upon transplantation into NSG mice in comparison to the control cohort. Together, our findings will help to elucidate the complex network of cell signaling proteins, further support a functional role for SHIP1 as tumor suppressor in T-ALL and, much more importantly, show that full-length SHIP1 is expressed in T-ALL samples.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Ratones Endogámicos , Fosfatidilinositol 3-Quinasas/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Trasplante Heterólogo , Humanos
16.
Radiat Oncol ; 18(1): 19, 2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36709315

RESUMEN

BACKGROUND: The gene of the Epidermal growth factor receptor (EGFR) is one of the most frequently altered genes in glioblastoma (GBM), with deletions of exons 2-7 (EGFRvIII) being amongst the most common genomic mutations. EGFRvIII is heterogeneously expressed in GBM. We already showed that EGFRvIII expression has an impact on chemosensitivity, replication stress, and the DNA damage response. Wee1 kinase is a major regulator of the DNA damage induced G2 checkpoint. It is highly expressed in GBM and its overexpression is associated with poor prognosis. Since Wee1 inhibition can lead to radiosensitization of EGFRvIII-negative (EGFRvIII-) GBM cells, we asked, if Wee1 inhibition is sufficient to radiosensitize also EGFRvIII-positive (EGFRvIII+) GBM cells. METHODS: We used the clinically relevant Wee1 inhibitor adavosertib and two pairs of isogenetic GBM cell lines with and without endogenous EGFRvIII expression exhibiting different TP53 status. Moreover, human GBM samples displaying heterogenous EGFRvIII expression were analyzed. Expression of Wee1 was assessed by Western blot and respectively immunohistochemistry. The impact of Wee1 inhibition in combination with irradiation on cell cycle and cell survival was analyzed by flow cytometry and colony formation assay. RESULTS: Analysis of GBM cells and patient samples revealed a higher expression of Wee1 in EGFRvIII+ cells compared to their EGFRvIII- counterparts. Downregulation of EGFRvIII expression by siRNA resulted in a strong decrease in Wee1 expression. Wee1 inhibition efficiently abrogated radiation-induced G2-arrest and caused radiosensitization, without obvious differences between EGFRvIII- and EGFRvIII+ GBM cells. CONCLUSION: We conclude that the inhibition of Wee1 is an effective targeting approach for the radiosensitization of both EGFRvIII- and EGFRvIII+ GBM cells and may therefore represent a promising new therapeutic option to increase response to radiotherapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/radioterapia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Neoplasias Encefálicas/radioterapia , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/uso terapéutico
17.
Clin Transl Radiat Oncol ; 41: 100630, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37180052

RESUMEN

Objectives: In head and neck squamous cell carcinoma (HNSCC), tumors negative for Human Papillomavirus (HPV) remain a difficult to treat entity and the morbidity of current multimodal treatment is high. Radiotherapy in combination with molecular targeting could represent suitable, less toxic treatment options especially for cisplatin ineligible patients. Therefore, we tested dual targeting of PARP and the intra-S/G2 checkpoint through Wee1 inhibition for its radiosensitizing capacity in radioresistant HPV-negative HNSCC cells. Materials and methods: Three radioresistant HPV-negative cell lines (HSC4, SAS, UT-SCC-60a) were treated with olaparib, adavosertib and ionizing irradiation. The impact on cell cycle, G2 arrest and replication stress was assessed through flow cytometry after DAPI, phospho-histone H3 and γH2AX staining. Long term cell survival after treatment was determined through colony formation assay and DNA double-strand break (DSB) levels were assessed through quantification of nuclear 53BP1 foci in cell lines and patient-derived HPV± tumor slice cultures. Results: Wee1 and dual targeting induced replication stress but failed to effectively inhibit radiation-induced G2 cell cycle arrest. Single as well as combined inhibition increased radiation sensitivity and residual DSB levels, with the largest effects induced through dual targeting. Dual targeting also enhanced residual DSB levels in patient-derived slice cultures from HPV-negative but not HPV+ HNSCC (5/7 vs. 1/6). Conclusion: We conclude that the combined inhibition of PARP and Wee1 results in enhanced residual DNA damage levels after irradiation and effectively sensitizes radioresistant HPV-negative HNSCC cells. Ex vivo tumor slice cultures may predict the response of individual patients with HPV-negative HNSCC to this dual targeting approach.

18.
Cancers (Basel) ; 14(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35454789

RESUMEN

The epithelial cell adhesion molecule (EpCAM) and Thy-1 cell surface antigen (CD90) have been implicated as cancer stem cell (CSC) markers in hepatocellular carcinoma (HCC). Expression of EpCAM and CD90 on HCC cells is associated with increased tumorigenicity, metastasis and poor prognosis. In this study, we demonstrate that combined treatment with AKT and mTOR inhibitors-i.e., MK2206 and RAD001-results in a synergistic reduction in proliferation of EpCAM+ and CD90+ HCC cells cultured either as adherent cells or as tumoroids in vitro. In addition, tumor growth was reduced by combined treatment with AKT and mTOR inhibitors in an orthotopic xenograft mouse model of an EpCAM+ HCC cell line (Huh7) and primary patient-derived EpCAM+ HCC cells (HCC1) as well as a CD90+ HCC-related cell line (SK-HEP1) in vivo. However, during AKT/mTOR treatment, outgrowth of therapy-resistant tumors was observed in all mice analyzed within a few weeks. Resistance was associated in most cases with restoration of AKT signaling in the tumors, intrahepatic metastases and distant metastases. In addition, an upregulation of the p38 MAPK pathway was identified in the AKT/mTOR inhibitor-resistant tumor cells by kinome profiling. The development of resistant cells during AKT/mTOR therapy was further analyzed by red-green-blue (RGB) marking of HCC cells, which revealed an outgrowth of a large number of Huh7 cells over a period of 6 months. In summary, our data demonstrate that combined treatment with AKT and mTOR inhibitors exhibits synergistic effects on proliferation of EpCAM+ as well as CD90+ HCC cells in vitro. However, the fast development of large numbers of resistant clones under AKT/mTOR therapy observed in vitro and in the orthotopic xenotransplantation mouse model in vivo strongly suggests that this therapy alone will not be sufficient to eliminate EpCAM+ or CD90+ cancer stem cells from HCC patients.

19.
Front Oncol ; 12: 765968, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35719921

RESUMEN

Patients with human papillomavirus-positive squamous cell carcinoma of the head and neck (HPV+ HNSCC) have a favorable prognosis compared to those with HPV-negative (HPV-) ones. We have shown previously that HPV+ HNSCC cell lines are characterized by enhanced radiation sensitivity and impaired DNA double-strand break (DSB) repair. Since then, various publications have suggested a defect in homologous recombination (HR) and dysregulated expression of DSB repair proteins as underlying mechanisms, but conclusions were often based on very few cell lines. When comparing the expression levels of suggested proteins and other key repair factors in 6 HPV+ vs. 5 HPV- HNSCC strains, we could not confirm most of the published differences. Furthermore, HPV+ HNSCC strains did not demonstrate enhanced sensitivity towards PARP inhibition, questioning a general HR defect. Interestingly, our expression screen revealed minimal levels of the central DNA damage response kinase ATM in the two most radiosensitive HPV+ strains. We therefore tested whether insufficient ATM activity may contribute to the enhanced cellular radiosensitivity. Irrespective of their ATM expression level, radiosensitive HPV+ HNSCC cells displayed DSB repair kinetics similar to ATM-deficient cells. Upon ATM inhibition, HPV+ cell lines showed only a marginal increase in residual radiation-induced γH2AX foci and induction of G2 cell cycle arrest as compared to HPV- ones. In line with these observations, ATM inhibition sensitized HPV+ HNSCC strains less towards radiation than HPV- strains, resulting in similar levels of sensitivity. Unexpectedly, assessment of the phosphorylation kinetics of the ATM targets KAP-1 and Chk2 as well as ATM autophosphorylation after radiation did not indicate directly compromised ATM activity in HPV-positive cells. Furthermore, ATM inhibition delayed radiation induced DNA end resection in both HPV+ and HPV- cells to a similar extent, further suggesting comparable functionality. In conclusion, DNA repair kinetics and a reduced effectiveness of ATM inhibition clearly point to an impaired ATM-orchestrated DNA damage response in HPV+ HNSCC cells, but since ATM itself is apparently functional, the molecular mechanisms need to be further explored.

20.
Cell Oncol (Dordr) ; 45(6): 1401-1419, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36269546

RESUMEN

PURPOSE: Gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) form a rare and remarkably heterogeneous group of tumors. Therefore, establishing personalized therapies is eminently challenging. To achieve progress in preclinical drug development, there is an urgent need for relevant tumor models. METHODS: We successfully established three gastroenteropancreatic neuroendocrine tumor (GEP-NET) cell lines (NT-18P, NT-18LM, NT-36) and two gastroenteropancreatic neuroendocrine carcinoma (GEP-NEC) cell lines (NT-32 and NT-38). We performed a comprehensive characterization of morphology, NET differentiation, proliferation and intracellular signaling pathways of these five cell lines and, in addition, of the NT-3 GEP-NET cell line. Additionally, we conducted panel sequencing to identify genomic alterations suitable for mutation-based targeted therapy. RESULTS: We found that the GEP-NEN cell lines exhibit a stable neuroendocrine phenotype. Functional kinome profiling revealed a higher activity of serine/threonine kinases (STK) as well as protein tyrosine kinases (PTK) in the GEP-NET cell lines NT-3 and NT-18LM compared to the GEP-NEC cell lines NT-32 and NT-38. Panel sequencing revealed a mutation in Death Domain Associated Protein (DAXX), sensitizing NT-18LM to the Ataxia telangiectasia and Rad3 related (ATR) inhibitor Berzosertib, and a mutation in AT-Rich Interaction Domain 1A (ARID1A), sensitizing NT-38 to the Aurora kinase A inhibitor Alisertib. Small interfering RNA-mediated knock down of DAXX in the DAXX wild type cell line NT-3 sensitized these cells to Berzosertib. CONCLUSIONS: The newly established GEP-NET and GEP-NEC cell lines represent comprehensive preclinical in vitro models suitable to decipher GEP-NEN biology and pathogenesis. Additionally, we present the first results of a GEP-NEN-specific mutation-based targeted therapy. These findings open up new potentialities for personalized therapies in GEP-NEN.


Asunto(s)
Neoplasias Intestinales , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Neoplasias Gástricas , Humanos , Estudios de Factibilidad , Tumores Neuroendocrinos/tratamiento farmacológico , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/metabolismo , Neoplasias Intestinales/tratamiento farmacológico , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA