Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(1): 946-953, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38154120

RESUMEN

Hyperpolarized (HP) carbon-13 [13C] enables the specific investigation of dynamic metabolic and physiologic processes via in vivo MRI-based molecular imaging. As the leading HP metabolic agent, [1-13C]pyruvate plays a pivotal role due to its rapid tissue uptake and central role in cellular energetics. Dissolution dynamic nuclear polarization (d-DNP) is considered the gold standard method for the production of HP metabolic probes; however, development of a faster, less expensive technique could accelerate the translation of metabolic imaging via HP MRI to routine clinical use. Signal Amplification by Reversible Exchange in SHield Enabled Alignment Transfer (SABRE-SHEATH) achieves rapid hyperpolarization by using parahydrogen (p-H2) as the source of nuclear spin order. Currently, SABRE is clinically limited due to the toxicity of the iridium catalyst, which is crucial to the SABRE process. To mitigate Ir contamination, we introduce a novel iteration of the SABRE catalyst, incorporating bis(polyfluoroalkylated) imidazolium salts. This novel perfluorinated SABRE catalyst retained polarization properties while exhibiting an enhanced hydrophobicity. This modification allows the easy removal of the perfluorinated SABRE catalyst from HP [1-13C]-pyruvate after polarization in an aqueous solution, using the ReD-SABRE protocol. The residual Ir content after removal was measured via ICP-MS at 177 ppb, which is the lowest reported to date for pyruvate and is sufficiently safe for use in clinical investigations. Further improvement is anticipated once automated processes for delivery and recovery are initiated. SABRE-SHEATH using the perfluorinated SABRE catalyst can become an attractive low-cost alternative to d-DNP to prepare biocompatible HP [1-13C]-pyruvate formulations for in vivo applications in next-generation molecular imaging modalities.


Asunto(s)
Iridio , Ácido Pirúvico , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Agua
2.
Magn Reson Med ; 91(1): 413-423, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37676121

RESUMEN

PURPOSE: In this study, we compared two triarylmethyl (TAM) spin probes, Ox071 and Ox063 for their efficacy in measuring tissue oxygen levels under hypoxic and normoxic conditions by R2 *-based EPR oximetry. METHODS: The R2 * dependencies on the spin probe concentration and oxygen level were calibrated using deoxygenated 1, 2, 5, and 10 mM standard solutions and 2 mM solutions saturated at 0%, 2%, 5%, 10%, and 21% of oxygen. For the hypoxic model, in vivo imaging of a MIA PaCa-2 tumor implanted in the hind leg of a mouse was performed on successive days by R2 *-based EPR oximetry using either Ox071 or Ox063. For the normoxic model, renal imaging of healthy athymic mice was performed using both spin probes. The 3D images were reconstructed by single point imaging and multi-gradient technique was used to determine R2 * maps. RESULTS: The signal intensities of Ox071 were approximately three times greater than that of Ox063 in the entire partial pressure of oxygen (pO2 ) range investigated. The histograms of the tumor pO2 images were skewed for both spin probes, and Ox071 showed more frequency counts at pO2 > 32 mm Hg. In the normoxic kidney model, there was a clear delineation between the high pO2 cortex and the low pO2 medulla regions. The histogram of high-resolution kidney oximetry image using Ox071 was nearly symmetrical and frequency counts were seen up to 55 mm Hg, which were missed in Ox063 imaging. CONCLUSION: As an oximetric probe, Ox071 has clear advantages over Ox063 in terms of sensitivity and the pO2 dynamic range.


Asunto(s)
Neoplasias , Oximetría , Ratones , Animales , Espectroscopía de Resonancia por Spin del Electrón/métodos , Oximetría/métodos , Oxígeno , Imagenología Tridimensional
3.
Psychol Med ; : 1-13, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509831

RESUMEN

BACKGROUND: Several factors shape the neurodevelopmental trajectory. A key area of focus in neurodevelopmental research is to estimate the factors that have maximal influence on the brain and can tip the balance from typical to atypical development. METHODS: Utilizing a dissimilarity maximization algorithm on the dynamic mode decomposition (DMD) of the resting state functional MRI data, we classified subjects from the cVEDA neurodevelopmental cohort (n = 987, aged 6-23 years) into homogeneously patterned DMD (representing typical development in 809 subjects) and heterogeneously patterned DMD (indicative of atypical development in 178 subjects). RESULTS: Significant DMD differences were primarily identified in the default mode network (DMN) regions across these groups (p < 0.05, Bonferroni corrected). While the groups were comparable in cognitive performance, the atypical group had more frequent exposure to adversities and faced higher abuses (p < 0.05, Bonferroni corrected). Upon evaluating brain-behavior correlations, we found that correlation patterns between adversity and DMN dynamic modes exhibited age-dependent variations for atypical subjects, hinting at differential utilization of the DMN due to chronic adversities. CONCLUSION: Adversities (particularly abuse) maximally influence the DMN during neurodevelopment and lead to the failure in the development of a coherent DMN system. While DMN's integrity is preserved in typical development, the age-dependent variability in atypically developing individuals is contrasting. The flexibility of DMN might be a compensatory mechanism to protect an individual in an abusive environment. However, such adaptability might deprive the neural system of the faculties of normal functioning and may incur long-term effects on the psyche.

4.
J Environ Manage ; 354: 120477, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38417362

RESUMEN

The Indian coastal waters are stressed due to a multitude of factors, such as the discharge of industrial effluents, urbanization (municipal sewage), agricultural runoff, and river discharge. The coastal waters along the eastern and western seaboard of India exhibit contrasting characteristics in terms of seasonality, the magnitude of river influx, circulation pattern, and degree of anthropogenic activity. Therefore, understanding these processes and forecasting their occurrence is highly necessary to secure the health of coastal waters, habitats, marine resources, and the safety of tourists. This article introduces an integrated buoy-satellite based Water Quality Nowcasting System (WQNS) to address the unique challenges of water quality monitoring in Indian coastal waters and to boost the regional blue economy. The Indian National Centre for Ocean Information Services (INCOIS) has launched a first-of-its-kind WQNS, and positioned the buoys at two important locations along the east (Visakhapatnam) and west (Kochi) coast of India, covering a range of environmental conditions and tourist-intensive zones. These buoys are equipped with different physical-biogeochemical sensors, data telemetry systems, and integration with satellite-based observations for real-time data transmission to land. The sensors onboard these buoys continuously measure 22 water quality parameters, including surface current (speed and direction), salinity, temperature, pH, dissolved oxygen, phycocyanin, phycoerythrin, Coloured Dissolved Organic Matter, chlorophyll-a, turbidity, dissolved methane, hydrocarbon (crude and refined), scattering, pCO2 (water and air), and inorganic macronutrients (nitrite, nitrate, ammonium, phosphate, silicate). This real-time data is transmitted to a central processing facility at INCOIS, and after necessary quality control, the data is disseminated through the INCOIS website. Preliminary results from the WQNS show promising outcomes, including the short-term changes in the water column oxic and hypoxic regimes within a day in coastal waters off Kochi during the monsoon period, whereas effluxing of high levels of CO2 into the atmosphere associated with the mixing of water, driven by local depression in the coastal waters off Visakhapatnam. The system has demonstrated its ability to detect changes in the water column properties due to episodic events and mesoscale processes. Additionally, it offers valuable data for research, management, and policy development related to coastal water quality.


Asunto(s)
Ecosistema , Calidad del Agua , India , Océanos y Mares , Naciones Unidas , Monitoreo del Ambiente , Agua de Mar/química
5.
Angew Chem Int Ed Engl ; : e202407349, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829568

RESUMEN

Real-time visualization of metabolic processes in vivo provides crucial insights into conditions like cancer and metabolic disorders. Metabolic magnetic resonance imaging (MRI), by amplifying the signal of pyruvate molecules through hyperpolarization, enables non-invasive monitoring of metabolic fluxes, aiding in understanding disease progression and treatment response. Signal Amplification By Reversible Exchange (SABRE) presents a simpler, cost-effective alternative to dissolution dynamic nuclear polarization, eliminating the need for expensive equipment and complex procedures. We present the first in vivo demonstration of metabolic sensing in a human pancreatic cancer xenograft model compared to healthy mice. A novel perfluorinated Iridium SABRE catalyst in a fluorinated solvent and methanol blend facilitated this breakthrough with a 2.2-fold increase in [1-13C]pyruvate SABRE hyperpolarization. The perfluorinated moiety allowed easy separation of the heavy-metal-containing catalyst from the hyperpolarized [1-13C]pyruvate target. The perfluorinated catalyst exhibited recyclability, maintaining SABRE-SHEATH activity through subsequent hyperpolarization cycles with minimal activity loss after the initial two cycles. Remarkably, the catalyst retained activity for at least 10 cycles, with a 3.3-fold decrease in hyperpolarization potency. This proof-of-concept study encourages wider adoption of SABRE hyperpolarized [1-13C]pyruvate MR for studying in vivo metabolism, aiding in diagnosing stages and monitoring treatment responses in cancer and other diseases.

6.
Blood ; 137(1): 126-137, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-32785680

RESUMEN

Graft-versus-host disease (GVHD) is a prominent barrier to allogeneic hematopoietic stem cell transplantation (AHSCT). Definitive diagnosis of GVHD is invasive, and biopsies of involved tissues pose a high risk of bleeding and infection. T cells are central to GVHD pathogenesis, and our previous studies in a chronic GVHD mouse model showed that alloreactive CD4+ T cells traffic to the target organs ahead of overt symptoms. Because increased glycolysis is an early feature of T-cell activation, we hypothesized that in vivo metabolic imaging of glycolysis would allow noninvasive detection of liver GVHD as activated CD4+ T cells traffic into the organ. Indeed, hyperpolarized 13C-pyruvate magnetic resonance imaging detected high rates of conversion of pyruvate to lactate in the liver ahead of animals becoming symptomatic, but not during subsequent overt chronic GVHD. Concomitantly, CD4+ T effector memory cells, the predominant pathogenic CD4+ T-cell subset, were confirmed to be highly glycolytic by transcriptomic, protein, metabolite, and ex vivo metabolic activity analyses. Preliminary data from single-cell sequencing of circulating T cells in patients undergoing AHSCT also suggested that increased glycolysis may be a feature of incipient acute GVHD. Metabolic imaging is being increasingly used in the clinic and may be useful in the post-AHSCT setting for noninvasive early detection of GVHD.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Enfermedad Injerto contra Huésped/diagnóstico por imagen , Enfermedad Injerto contra Huésped/metabolismo , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Animales , Isótopos de Carbono , Glucólisis , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Activación de Linfocitos/inmunología , Ratones , Análisis de la Célula Individual/métodos , Trasplante Homólogo
7.
Dev Psychopathol ; 35(2): 800-808, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35393927

RESUMEN

Developmental adversities early in life are associated with later psychopathology. Clustering may be a useful approach to group multiple diverse risks together and study their relation with psychopathology. To generate risk clusters of children, adolescents, and young adults, based on adverse environmental exposure and developmental characteristics, and to examine the association of risk clusters with manifest psychopathology. Participants (n = 8300) between 6 and 23 years were recruited from seven sites in India. We administered questionnaires to elicit history of previous exposure to adverse childhood environments, family history of psychiatric disorders in first-degree relatives, and a range of antenatal and postnatal adversities. We used these variables to generate risk clusters. Mini-International Neuropsychiatric Interview-5 was administered to evaluate manifest psychopathology. Two-step cluster analysis revealed two clusters designated as high-risk cluster (HRC) and low-risk cluster (LRC), comprising 4197 (50.5%) and 4103 (49.5%) participants, respectively. HRC had higher frequencies of family history of mental illness, antenatal and neonatal risk factors, developmental delays, history of migration, and exposure to adverse childhood experiences than LRC. There were significantly higher risks of any psychiatric disorder [Relative Risk (RR) = 2.0, 95% CI 1.8-2.3], externalizing (RR = 4.8, 95% CI 3.6-6.4) and internalizing disorders (RR = 2.6, 95% CI 2.2-2.9), and suicidality (2.3, 95% CI 1.8-2.8) in HRC. Social-environmental and developmental factors could classify Indian children, adolescents and young adults into homogeneous clusters at high or low risk of psychopathology. These biopsychosocial determinants of mental health may have practice, policy and research implications for people in low- and middle-income countries.


Asunto(s)
Trastornos Mentales , Psicopatología , Recién Nacido , Humanos , Niño , Femenino , Adolescente , Adulto Joven , Embarazo , Trastornos Mentales/psicología , Salud Mental , Factores de Riesgo , Encuestas y Cuestionarios
8.
Indian J Crit Care Med ; 27(11): 859-860, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37936798

RESUMEN

How to cite this article: Accamma K, Shamarao S, Ram A, Devananda NS, Krishna M, Bandagi LS, et al. Severe Diabetic Ketoacidosis with Malignant Hyperthermia Like Syndrome and Rhabdomyolysis Treated with ECMO: Unusual Severity and a Rare Occurrence. Indian J Crit Care Med 2023;27(11):859-860.

9.
Anal Chem ; 94(39): 13422-13431, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36136056

RESUMEN

α-Ketoglutarate is a key biomolecule involved in a number of metabolic pathways─most notably the TCA cycle. Abnormal α-ketoglutarate metabolism has also been linked with cancer. Here, isotopic labeling was employed to synthesize [1-13C,5-12C,D4]α-ketoglutarate with the future goal of utilizing its [1-13C]-hyperpolarized state for real-time metabolic imaging of α-ketoglutarate analytes and its downstream metabolites in vivo. The signal amplification by reversible exchange in shield enables alignment transfer to heteronuclei (SABRE-SHEATH) hyperpolarization technique was used to create 9.7% [1-13C] polarization in 1 minute in this isotopologue. The efficient 13C hyperpolarization, which utilizes parahydrogen as the source of nuclear spin order, is also supported by favorable relaxation dynamics at 0.4 µT field (the optimal polarization transfer field): the exponential 13C polarization buildup constant Tb is 11.0 ± 0.4 s whereas the 13C polarization decay constant T1 is 18.5 ± 0.7 s. An even higher 13C polarization value of 17.3% was achieved using natural-abundance α-ketoglutarate disodium salt, with overall similar relaxation dynamics at 0.4 µT field, indicating that substrate deuteration leads only to a slight increase (∼1.2-fold) in the relaxation rates for 13C nuclei separated by three chemical bonds. Instead, the gain in polarization (natural abundance versus [1-13C]-labeled) is rationalized through the smaller heat capacity of the "spin bath" comprising available 13C spins that must be hyperpolarized by the same number of parahydrogen present in each sample, in line with previous 15N SABRE-SHEATH studies. Remarkably, the C-2 carbon was not hyperpolarized in both α-ketoglutarate isotopologues studied; this observation is in sharp contrast with previously reported SABRE-SHEATH pyruvate studies, indicating that the catalyst-binding dynamics of C-2 in α-ketoglutarate differ from that in pyruvate. We also demonstrate that 13C spectroscopic characterization of α-ketoglutarate and pyruvate analytes can be performed at natural 13C abundance with an estimated detection limit of 80 micromolar concentration × *%P13C. All in all, the fundamental studies reported here enable a wide range of research communities with a new hyperpolarized contrast agent potentially useful for metabolic imaging of brain function, cancer, and other metabolically challenging diseases.


Asunto(s)
Ácidos Cetoglutáricos , Teofilina , Catálisis , Medios de Contraste , Ácido Pirúvico
10.
NMR Biomed ; 35(10): e4783, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35661282

RESUMEN

Reoxygenation has a significant impact on the tumor response to radiotherapy. With developments in radiotherapy technology, the relevance of the reoxygenation phenomenon in treatment efficacy has been a topic of interest. Evaluating the reoxygenation in the tumor microenvironment throughout the course of radiation therapy is important in developing effective treatment strategies. In the current study, we used electron paramagnetic resonance imaging (EPRI) to directly map and quantify the partial oxygen pressure (pO2 ) in tumor tissues. Human colorectal cancer cell lines, HT29 and HCT116, were used to induce tumor growth in female athymic nude mice. Tumors were irradiated with 3, 10, or 20 Gy using an x-ray irradiator. Prior to each EPRI scan, magnetic resonance imaging (MRI) was performed to obtain T2-weighted anatomical images for reference. The differences in the mean pO2 were determined through two-tailed Student's t-test and one-way analysis of variance. The median pO2 60 min after irradiation was found to be lower in HCT116 than in HT29 (9.1 ± 1.5 vs. 14.0 ± 1.0 mmHg, p = 0.045). There was a tendency for delayed and incomplete recovery of pO2 in the HT29 tumor when a higher dose of irradiation (10 and 20 Gy) was applied. Moreover, there was a dose-dependent increase in the hypoxic areas (pO2  < 10 mmHg) 2 and 24 h after irradiation in all groups. In addition, an area that showed pO2 fluctuation between hypoxia and normoxia (pO2  > 10 mmHg) was also identified surrounding the region with stable hypoxia, and it slightly enlarged after recovery from acute hypoxia. In conclusion, we demonstrated the reoxygenation phenomenon in an in vivo xenograft model study using EPRI. These findings may lead to new knowledge regarding the reoxygenation process and possibilities of a new radiation therapy concept, namely, reoxygenation-based radiation therapy.


Asunto(s)
Hipoxia , Neoplasias , Animales , Hipoxia de la Célula , Espectroscopía de Resonancia por Spin del Electrón/métodos , Femenino , Humanos , Ratones , Ratones Desnudos , Oxígeno/metabolismo , Microambiente Tumoral
11.
Chemphyschem ; 23(2): e202100839, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34813142

RESUMEN

Signal Amplification By Reversible Exchange in SHield Enabled Alignment Transfer (SABRE-SHEATH) is investigated to achieve rapid hyperpolarization of 13 C1 spins of [1-13 C]pyruvate, using parahydrogen as the source of nuclear spin order. Pyruvate exchange with an iridium polarization transfer complex can be modulated via a sensitive interplay between temperature and co-ligation of DMSO and H2 O. Order-unity 13 C (>50 %) polarization of catalyst-bound [1-13 C]pyruvate is achieved in less than 30 s by restricting the chemical exchange of [1-13 C]pyruvate at lower temperatures. On the catalyst bound pyruvate, 39 % polarization is measured using a 1.4 T NMR spectrometer, and extrapolated to >50 % at the end of build-up in situ. The highest measured polarization of a 30-mM pyruvate sample, including free and bound pyruvate is 13 % when using 20 mM DMSO and 0.5 M water in CD3 OD. Efficient 13 C polarization is also enabled by favorable relaxation dynamics in sub-microtesla magnetic fields, as indicated by fast polarization buildup rates compared to the T1 spin-relaxation rates (e. g., ∼0.2 s-1 versus ∼0.1 s-1 , respectively, for a 6 mM catalyst-[1-13 C]pyruvate sample). Finally, the catalyst-bound hyperpolarized [1-13 C]pyruvate can be released rapidly by cycling the temperature and/or by optimizing the amount of water, paving the way to future biomedical applications of hyperpolarized [1-13 C]pyruvate produced via comparatively fast and simple SABRE-SHEATH-based approaches.


Asunto(s)
Ácido Pirúvico , Agua , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Isótopos de Nitrógeno , Agua/química
12.
Aging Ment Health ; 26(2): 423-430, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33491464

RESUMEN

OBJECTIVE: Currently no standardized tools are available in the Indian languages to assess changes in cognition. Our objectives are to culturally adapt the Alzheimer's disease Assessment Scale-Cognitive Subscale (ADAS-Cog) for use in India and to validate the Tamil version in an urban Tamil-speaking older adult population. METHODS: Two panels of key stakeholders and a series of qualitative interviews informed the cultural and linguistic adaptation of the ADAS-Cog-Tamil. Issues related to levels of literacy were considered during the adaptation. Validation of the ADAS-Cog-Tamil was completed with 107 participants - 54 cases with a confirmed diagnosis of mild-moderate dementia, and 53 age, gender and education matched controls. Concurrent validity was examined with the Vellore Screening Instrument for Dementia (VSID) in Tamil. Internal consistency using Cronbach's alpha, sensitivity and specificity data using the Area under the Receiver Operating Characteristics (AUROC) curve values were computed. Inter-rater reliability was established in a subsample. RESULTS: The ADAS-Cog-Tamil shows good internal consistency (α = 0.91), inter-rater reliability and concurrent validity (with VSID-Patient version: r = -0.84 and with VSID-Caregiver version: r = -0.79). A cut-off score of 13, has a specificity of 89% and sensitivity of 90% for the diagnosis of dementia. CONCLUSION: ADAS-Cog-Tamil, derived from a rigorous, replicable linguistic and cultural adaptation process involving service users and experts, shows good psychometric properties despite the limitations of the study. It shows potential for use in clinical settings with urban Tamil speaking populations. The English version of the tool derived from the cultural adaptation process could be used for further linguistic adaptation across South Asia.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Enfermedad de Alzheimer/diagnóstico , Cognición , Humanos , India , Lenguaje , Pruebas Neuropsicológicas , Psicometría , Reproducibilidad de los Resultados
13.
Child Youth Serv Rev ; 136: 106439, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35521438

RESUMEN

Introduction: Youth mental health support and services vary across sociocultural contexts. It is important to capture the perspectives of youth with lived experiences for planning needs-led interventions and services, especially in Global South Countries (GSC), with limited specialist resources and representative literature. Methods: The aim was to establish how youth with lived experiences of anxiety and depression viewed external support in different countries, and how these views were juxtaposed with those of professionals. We involved 121 youth aged 14-24 years and 62 professionals from different disciplines in eight countries, predominantly from the Global South. Two youth and one professional focus group was facilitated in each country. The data were analysed through a codebook thematic approach. Results: Youth across all countries largely valued informal support from family, peers and community, whilst those from GSC had limited access to structural support. They related lived experiences to therapeutic engagement and processes, in contrast with professionals who focused on outcomes and service delivery. Mental health awareness and integration of interventions with social support were considered essential by both youth and professionals, especially in disadvantaged communities. Conclusion: The mental health needs of youth in disadvantaged GSC communities can be best met through multi-modal interventions addressing these needs across their socioecology and positioned within a stepped care model. Youth with lived experiences should be involved in service planning, implementation and monitoring.

14.
Anal Chem ; 93(24): 8476-8483, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34102835

RESUMEN

We report on a robust and low-cost parahydrogen generator design employing liquid nitrogen as a coolant. The core of the generator consists of catalyst-filled spiral copper tubing, which can be pressurized to 35 atm. Parahydrogen fraction >48% was obtained at 77 K with three nearly identical generators using paramagnetic hydrated iron oxide catalysts. Parahydrogen quantification was performed on the fly via benchtop NMR spectroscopy to monitor the signal from residual orthohydrogen-parahydrogen is NMR silent. This real-time quantification approach was also used to evaluate catalyst activation at up to 1.0 standard liter per minute flow rate. The reported inexpensive device can be employed for a wide range of studies employing parahydrogen as a source of nuclear spin hyperpolarization. To this end, we demonstrate the utility of this parahydrogen generator for hyperpolarization of concentrated sodium [1-13C]pyruvate, a metabolic contrast agent under investigation in numerous clinical trials. The reported pilot optimization of SABRE-SHEATH (signal amplification by reversible exchange-shield enables alignment transfer to heteronuclei) hyperpolarization yielded 13C signal enhancement of over 14,000-fold at a clinically relevant magnetic field of 1 T corresponding to approximately 1.2% 13C polarization-if near 100% parahydrogen would have been employed, the reported value would be tripled to 13C polarization of 3.5%.


Asunto(s)
Imagen por Resonancia Magnética , Nitrógeno , Campos Magnéticos , Espectroscopía de Resonancia Magnética , Isótopos de Nitrógeno
15.
Magn Reson Med ; 85(1): 42-48, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32697878

RESUMEN

PURPOSE: In dynamic nuclear polarization (DNP), the solution needs to form a glass to attain significant levels of polarization in reasonable time periods. Molecules that do not form glasses by themselves are often mixed with glass forming excipients. Although glassing agents are often essential in DNP studies, they have the potential to perturb the metabolic measurements that are being studied. Glycerol, the glassing agent of choice for in vivo DNP studies, is effective in reducing ice crystal formation during freezing, but is rapidly metabolized, potentially altering the redox and adenosine triphosphate balance of the system. METHODS: DNP buildup curves of 13 C urea and alanine with OX063 in the presence of trehalose, glycerol, and other polyol excipients were measured as a function of concentration. T1 and Tm relaxation times for OX063 in the presence of trehalose were measured by EPR. RESULTS: Approximately 15-20 wt% trehalose gives a glass that polarizes samples more rapidly than the commonly used 60%-wt formulation of glycerol and yields similar polarization levels within clinically relevant timeframes. CONCLUSIONS: Trehalose may be an attractive biologically inert alternative to glycerol for situations where there may be concerns about glycerol's glucogenic potential and possible alteration of the adenosine triphosphate/adenosine diphosphate and redox balance.


Asunto(s)
Glicerol , Compuestos Heterocíclicos , Trehalosa , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética
16.
Magn Reson Med ; 86(5): 2497-2511, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34173268

RESUMEN

PURPOSE: To improve hyperpolarized 13 C (HP-13 C) MRI by image denoising with a new approach, patch-based higher-order singular value decomposition (HOSVD). METHODS: The benefit of using a patch-based HOSVD method to denoise dynamic HP-13 C MR imaging data was investigated. Image quality and the accuracy of quantitative analyses following denoising were evaluated first using simulated data of [1-13 C]pyruvate and its metabolic product, [1-13 C]lactate, and compared the results to a global HOSVD method. The patch-based HOSVD method was then applied to healthy volunteer HP [1-13 C]pyruvate EPI studies. Voxel-wise kinetic modeling was performed on both non-denoised and denoised data to compare the number of voxels quantifiable based on SNR criteria and fitting error. RESULTS: Simulation results demonstrated an 8-fold increase in the calculated SNR of [1-13 C]pyruvate and [1-13 C]lactate with the patch-based HOSVD denoising. The voxel-wise quantification of kPL (pyruvate-to-lactate conversion rate) showed a 9-fold decrease in standard errors for the fitted kPL after denoising. The patch-based denoising performed superior to the global denoising in recovering kPL information. In volunteer data sets, [1-13 C]lactate and [13 C]bicarbonate signals became distinguishable from noise across captured time points with over a 5-fold apparent SNR gain. This resulted in >3-fold increase in the number of voxels quantifiable for mapping kPB (pyruvate-to-bicarbonate conversion rate) and whole brain coverage for mapping kPL . CONCLUSIONS: Sensitivity enhancement provided by this denoising significantly improved quantification of metabolite dynamics and could benefit future studies by improving image quality, enabling higher spatial resolution, and facilitating the extraction of metabolic information for clinical research.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Algoritmos , Encéfalo/diagnóstico por imagen , Simulación por Computador , Humanos , Ácido Láctico , Ácido Pirúvico , Relación Señal-Ruido
17.
NMR Biomed ; 34(7): e4514, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33939204

RESUMEN

Dynamic nuclear polarization (DNP) of 13 C-labeled substrates enables the use of magnetic resonance imaging (MRI) to monitor specific enzymatic reactions in tumors and offers an opportunity to investigate these differences. In this study, DNP-MRI chemical shift imaging with hyperpolarized [1-13 C] pyruvate was conducted to evaluate the metabolic change in glycolytic profiles after radiation of two glioma stem-like cell-derived gliomas (GBMJ1 and NSC11) and an adherent human glioblastoma cell line (U251) in an orthotopic xenograft mouse model. The DNP-MRI showed an increase in Lac/Pyr at 6 and 16 h after irradiation (18% ± 4% and 14% ± 3%, respectively; mean ± SEM) compared with unirradiated controls in GBMJ1 tumors, whereas no significant change was observed in U251 and NSC11 tumors. Metabolomic analysis likewise showed a significant increase in lactate in GBMJ1 tumors at 16 h. An immunoblot assay showed upregulation of lactate dehydrogenase-A expression in GBMJ1 following radiation exposure, consistent with DNP-MRI and metabolomic analysis. In conclusion, our preclinical study demonstrates that the DNP-MRI technique has the potential to be a powerful diagnostic method with which to evaluate GBM tumor metabolism before and after radiation in the clinical setting.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13 , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Animales , Línea Celular Tumoral , Glioblastoma/diagnóstico por imagen , Humanos , Lactato Deshidrogenasa 5/metabolismo , Ácido Láctico/metabolismo , Imagen por Resonancia Magnética , Metabolómica , Ratones Desnudos , Ácido Pirúvico/metabolismo
18.
NMR Biomed ; 34(11): e4588, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34263489

RESUMEN

Isocitrate dehydrogenase 1 (IDH1) mutations that generate the oncometabolite 2-hydroxyglutarate (2-HG) from α-ketoglutarate (α-KG) have been identified in many types of tumors and are an important prognostic factor in gliomas. 2-HG production can be determined by hyperpolarized carbon-13 magnetic resonance spectroscopy (HP-13 C-MRS) using [1-13 C]-α-KG as a probe, but peak contamination from naturally occurring [5-13 C]-α-KG overlaps with the [1-13 C]-2-HG peak. Via a newly developed oxidative-Stetter reaction, [1-13 C-5-12 C]-α-KG was synthesized. α-KG metabolism was measured via HP-13 C-MRS using [1-13 C-5-12 C]-α-KG as a probe. [1-13 C-5-12 C]-α-KG was synthesized in high yields, and successfully eliminated the signal from C5 of α-KG in the HP-13 C-MRS spectra. In HCT116 IDH1 R132H cells, [1-13 C-5-12 C]-α-KG allowed for unimpeded detection of [1-13 C]-2-HG. 12 C-enrichment represents a novel method to circumvent spectral overlap, and [1-13 C-5-12 C]-α-KG shows promise as a probe to study IDH1 mutant tumors and α-KG metabolism.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13 , Glutaratos/análisis , Ácidos Cetoglutáricos/metabolismo , Células HCT116 , Humanos
19.
Mol Psychiatry ; 25(8): 1618-1630, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32203154

RESUMEN

The global burden of disease attributable to externalizing disorders such as alcohol misuse calls urgently for effective prevention and intervention. As our current knowledge is mainly derived from high-income countries such in Europe and North-America, it is difficult to address the wider socio-cultural, psychosocial context, and genetic factors in which risk and resilience are embedded in low- and medium-income countries. c-VEDA was established as the first and largest India-based multi-site cohort investigating the vulnerabilities for the development of externalizing disorders, addictions, and other mental health problems. Using a harmonised data collection plan coordinated with multiple cohorts in China, USA, and Europe, baseline data were collected from seven study sites between November 2016 and May 2019. Nine thousand and ten participants between the ages of 6 and 23 were assessed during this time, amongst which 1278 participants underwent more intensive assessments including MRI scans. Both waves of follow-ups have started according to the accelerated cohort structure with planned missingness design. Here, we present descriptive statistics on several key domains of assessments, and the full baseline dataset will be made accessible for researchers outside the consortium in September 2019. More details can be found on our website [cveda.org].


Asunto(s)
Conducta Adictiva/psicología , Control Interno-Externo , Adolescente , Niño , China , Europa (Continente) , Humanos , India , Estudios Longitudinales , Estados Unidos , Adulto Joven
20.
Int Psychogeriatr ; : 1-14, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34666849

RESUMEN

OBJECTIVE: To examine if smaller size at birth, an indicator of growth restriction in utero, is associated with lower cognition in late life, and whether this may be mediated by impaired early life brain development and/or adverse cardiometabolic programming. DESIGN: Longitudinal follow-up of a birth cohort. SETTING: CSI Holdsworth Memorial Hospital (HMH), Mysore South India. PARTICIPANTS: 721 men and women (55-80 years) whose size at birth was recorded at HMH. Approximately 20 years earlier, a subset (n = 522) of them had assessments for cardiometabolic disorders in mid-life. MEASUREMENTS: Standardized measurement of cognitive function, depression, sociodemographic, and lifestyle factors; blood tests and assessments for cardiometabolic disorders. RESULTS: Participants who were heavier at birth had higher composite cognitive scores (0.12 SD per SD birth weight [95% CI 0.05, 0.19] p = 0.001) in late life. Other lifecourse factors independently positively related to cognition were maternal educational level and participants' own educational level, adult leg length, body mass index, and socioeconomic position, and negatively were diabetes in mid-life and current depression and stroke. The association of birth weight with cognition was independent cardiometabolic risk factors and was attenuated after adjustment for all lifecourse factors (0.08 SD per SD birth weight [95% CI -0.01, 0.18] p = 0.07). CONCLUSIONS: The findings are consistent with positive effects of early life environmental factors (better fetal growth, education, and childhood socioeconomic status) on brain development resulting in greater long-term cognitive function. The results do not support a pathway linking poorer fetal development with reduced late life cognitive function through cardiometabolic programming.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA