Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Biol Chem ; 299(8): 105026, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37423303

RESUMEN

Eukaryotic DNA replication is initiated from multiple genomic origins, which can be broadly categorized as firing early or late in the S phase. Several factors can influence the temporal usage of origins to determine the timing of their firing. In budding yeast, the Forkhead family proteins Fkh1 and Fkh2 bind to a subset of replication origins and activate them at the beginning of the S phase. In these origins, the Fkh1/2 binding sites are arranged in a strict configuration, suggesting that Forkhead factors must bind the origins in a specific manner. To explore these binding mechanisms in more detail, we mapped the domains of Fkh1 that were required for its role in DNA replication regulation. We found that a short region of Fkh1 near its DNA binding domain was essential for the protein to bind and activate replication origins. Analysis of purified Fkh1 proteins revealed that this region mediates dimerization of Fkh1, suggesting that intramolecular contacts of Fkh1 are required for efficient binding and regulation of DNA replication origins. We also show that the Sld3-Sld7-Cdc45 complex is recruited to Forkhead-regulated origins already in the G1 phase and that Fkh1 is constantly required to keep these factors bound on origins before the onset of the S phase. Together, our results suggest that dimerization-mediated stabilization of DNA binding by Fkh1 is crucial for its ability to activate DNA replication origins.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Origen de Réplica , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , ADN/metabolismo , Factores de Transcripción Forkhead/genética
2.
J Biol Chem ; 298(9): 102369, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35970389

RESUMEN

The transcriptional regulator Taf14 is a component of multiple protein complexes involved in transcription initiation and chromatin remodeling in yeast cells. Although Taf14 is not required for cell viability, it becomes essential in conditions where the formation of the transcription preinitiation complex is hampered. The specific role of Taf14 in mediating transcription initiation and preinitiation complex formation is unclear. Here, we explored its role in the general transcription factor IID by mapping Taf14 genetic and proteomic interactions and found that it was needed for the function of the complex if Htz1, the yeast homolog of histone H2A.Z, was absent from chromatin. Dissecting the functional domains of Taf14 revealed that the linker region between the YEATS and ET domains was required for cell viability in the absence of Htz1 protein. We further show that the linker region of Taf14 interacts with DNA. We propose that providing additional DNA binding capacity might be a general role of Taf14 in the recruitment of protein complexes to DNA and chromatin.


Asunto(s)
Histonas , Proteínas de Saccharomyces cerevisiae , Factor de Transcripción TFIID , Cromatina/genética , Cromatina/metabolismo , ADN/metabolismo , Histonas/genética , Histonas/metabolismo , Proteómica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIID/metabolismo
3.
PLoS Genet ; 13(1): e1006588, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28141805

RESUMEN

In budding yeast, activation of many DNA replication origins is regulated by their chromatin environment, whereas others fire in early S phase regardless of their chromosomal location. Several location-independent origins contain at least two divergently oriented binding sites for Forkhead (Fkh) transcription factors in close proximity to their ARS consensus sequence. To explore whether recruitment of Forkhead proteins to replication origins is dependent on the spatial arrangement of Fkh1/2 binding sites, we changed the spacing and orientation of the sites in early replication origins ARS305 and ARS607. We followed recruitment of the Fkh1 protein to origins by chromatin immunoprecipitation and tested the ability of these origins to fire in early S phase. Our results demonstrate that precise spatial and directional arrangement of Fkh1/2 sites is crucial for efficient binding of the Fkh1 protein and for early firing of the origins. We also show that recruitment of Fkh1 to the origins depends on formation of the pre-replicative complex (pre-RC) and loading of the Mcm2-7 helicase, indicating that the origins are regulated by cooperative action of Fkh1 and the pre-RC. These results reveal that DNA binding of Forkhead factors does not depend merely on the presence of its binding sites but on their precise arrangement and is strongly influenced by other protein complexes in the vicinity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Factores de Transcripción Forkhead/metabolismo , Origen de Réplica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Factores de Transcripción Forkhead/química , Factores de Transcripción Forkhead/genética , Unión Proteica , Fase S/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
4.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33260776

RESUMEN

Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which mediates the effects of a variety of environmental stimuli in multiple tissues. Recent advances in AHR biology have underlined its importance in cells with high developmental potency, including pluripotent stem cells. Nonetheless, there is little data on AHR expression and its role during the initial stages of stem cell differentiation. The purpose of this study was to investigate the temporal pattern of AHR expression during directed differentiation of human embryonic stem cells (hESC) into neural progenitor, early mesoderm and definitive endoderm cells. Additionally, we investigated the effect of the AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the gene expression profile in hESCs and differentiated cells by RNA-seq, accompanied by identification of AHR binding sites by ChIP-seq and epigenetic landscape analysis by ATAC-seq. We showed that AHR is differentially regulated in distinct lineages. We provided evidence that TCDD alters gene expression patterns in hESCs and during early differentiation. Additionally, we identified novel potential AHR target genes, which expand our understanding on the role of this protein in different cell types.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias Humanas/citología , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo , Biomarcadores , Diferenciación Celular/genética , Línea Celular , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Cuerpos Embrioides/citología , Cuerpos Embrioides/efectos de los fármacos , Genoma Humano , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Ligandos
5.
Int J Mol Sci ; 20(12)2019 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-31234584

RESUMEN

The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor primarily known for its toxicological functions. Recent studies have established its importance in many physiological processes including female reproduction, although there is limited data about the precise mechanisms how Ahr itself is regulated during ovarian follicle maturation. This study describes the expression of Ahr in ovarian granulosa cells (GCs) of immature mice in a gonadotropin-dependent manner. We show that Ahr upregulation in vivo requires both follicle stimulating hormone (FSH) and luteinizing hormone (LH) activities. FSH alone increased Ahr mRNA, but had no effect on Ahr protein level, implicating a possible LH-dependent post-transcriptional regulation. Also, the increase in Ahr protein is specific to large antral follicles in induced follicle maturation. We show that Ahr expression in GCs of mid-phase follicular maturation is downregulated by protein kinase A (PKA) signaling and activation of Ahr promoter is regulated by chromatin remodeling.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Epigénesis Genética , Hormona Folículo Estimulante/metabolismo , Regulación de la Expresión Génica , Células de la Granulosa/metabolismo , Hormona Luteinizante/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal , Animales , Biomarcadores , Cromatina/genética , Cromatina/metabolismo , Femenino , Ratones , Folículo Ovárico/metabolismo , Receptores de Hidrocarburo de Aril/genética , Transcripción Genética
6.
EMBO Rep ; 14(2): 191-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23222539

RESUMEN

To elucidate the role of the chromatin environment in the regulation of replication origin activation, autonomously replicating sequences were inserted into identical locations in the budding yeast genome and their activation times in S phase determined. Chromatin-dependent origins adopt to the firing time of the surrounding locus. In contrast, the origins containing two binding sites for Forkhead transcription factors are activated early in the S phase regardless of their location in the genome. Our results also show that genuinely late-replicating parts of the genome can be converted into early-replicating loci by insertion of a chromatin-independent early replication origin, ARS607, whereas insertion of two Forkhead-binding sites is not sufficient for conversion.


Asunto(s)
Cromatina/fisiología , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Secuencia de Bases , ADN de Hongos/genética , ADN de Hongos/metabolismo , Cinética , Datos de Secuencia Molecular , Unión Proteica , Origen de Réplica , Fase S , Saccharomyces cerevisiae/metabolismo
7.
STAR Protoc ; 5(3): 103282, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39232988

RESUMEN

Isolation of amplifiable genomic DNA is a prerequisite for the implementation of PCR-based techniques. Here we present a protocol for isolating the genomic DNA from a variety of wild yeast species. This can be completed in approximately 1 h and does not require sophisticated laboratory equipment. We describe steps for growing yeast cells, genomic data extraction, and downstream assay for amplification of specific sequences from the genomic DNA. We then detail procedures for gel electrophoresis and analysis of the results. For complete details on the use and execution of this protocol, please refer to Kristjuhan et al.1.


Asunto(s)
ADN de Hongos , Genoma Fúngico , Reacción en Cadena de la Polimerasa , Levaduras , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Levaduras/genética , Genoma Fúngico/genética , Genómica/métodos , Análisis Costo-Beneficio
8.
Heliyon ; 10(6): e27885, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38545165

RESUMEN

Yeasts are single-celled fungi that are widespread around the globe. They are part of a community of microorganisms that use a wide variety of habitats, including fruit surfaces. This study aimed to characterise the culturable epiphytic yeasts associated with apple fruits. The isolated yeast strains were identified by sequencing the 5.8S-ITS region and D1/D2 region of the large subunit ribosomal RNA gene and maintained for long-term storage. A total of 230 yeast isolates belonging to 33 species were recovered. Most of the collected isolates belonged to the phylum Basidiomycota. Members of genera Vishniacozyma, Filobasidium, and Rhodotorula were most frequently isolated. Over half of the species were isolated on only one to three occasions. In seven of the species obtained, the isolates were considerably divergent from their closest relatives and may therefore represent new distinct species. The results of this study demonstrate a high diversity of yeast species associated with apple fruits.

9.
J Biol Chem ; 286(27): 23817-22, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21606489

RESUMEN

The intensity of gene transcription is generally reflected by the level of RNA polymerase II (RNAPII) recruitment to the gene. However, genome-wide studies of polymerase occupancy indicate that RNAPII distribution varies among genes. In some loci more polymerases are found in the 5' region, whereas in other loci, in the 3' region of the gene. We studied the distribution of elongating RNAPII complexes at highly transcribed GAL-VPS13 locus in Saccharomyces cerevisiae and found that in the cell population the amount of polymerases gradually decreased toward the 3' end of the gene. However, the conventional chromatin immunoprecipitation assay averages the signal from the cell population, and no data on single cell level can be gathered. To study the spacing of elongating polymerases on single chromosomes, we used a sequential chromatin immunoprecipitation assay for the detection of multiple RNAPII complexes on the same DNA fragment. Our results demonstrate uniform distribution of elongating polymerases throughout all regions of the GAL-VPS13 gene.


Asunto(s)
ADN de Hongos/metabolismo , Sitios Genéticos/fisiología , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Transcripción Genética/fisiología , ADN de Hongos/genética , Genes Fúngicos/fisiología , Kluyveromyces/enzimología , Kluyveromyces/genética , ARN Polimerasa II/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
J Biol Chem ; 285(51): 40004-11, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-20962350

RESUMEN

DNA replication origins are licensed in early G(1) phase of the cell cycle where the origin recognition complex (ORC) recruits the minichromosome maintenance (MCM) helicase to origins. These pre-replicative complexes (pre-RCs) remain inactive until replication is initiated in the S phase. However, transcriptional activity in the regions of origins can eliminate their functionality by displacing the components of pre-RC from DNA. We analyzed genome-wide data of mRNA and cryptic unstable transcripts in the context of locations of replication origins in yeast genome and found that at least one-third of the origins are transcribed and therefore might be inactivated by transcription. When investigating the fate of transcriptionally inactivated origins, we found that replication origins were repetitively licensed in G(1) to reestablish their functionality after transcription. We propose that reloading of pre-RC components in G(1) might be utilized for the maintenance of sufficient number of competent origins for efficient initiation of DNA replication in S phase.


Asunto(s)
Replicación del ADN/fisiología , ADN de Hongos/biosíntesis , Origen de Réplica/fisiología , Saccharomyces cerevisiae/metabolismo , Transcripción Genética/fisiología , ADN Helicasas , ADN de Hongos/genética , Fase G1/fisiología , Fase S/fisiología , Saccharomyces cerevisiae/genética
11.
Epigenetics Chromatin ; 13(1): 24, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32460824

RESUMEN

BACKGROUND: The YEATS domain is a highly conserved protein structure that interacts with acetylated and crotonylated lysine residues in N-terminal tails of histones. The budding yeast genome encodes three YEATS domain proteins (Taf14, Yaf9, and Sas5) that are all the subunits of different complexes involved in histone acetylation, gene transcription, and chromatin remodeling. As the strains deficient in all these three genes are inviable, it has been proposed that the YEATS domain is essential in yeast. In this study we investigate in more detail the requirement of YEATS domain proteins for yeast survival and the possible roles of Taf14 YEATS domain in the regulation of gene transcription. RESULTS: We found that YEATS domains are not essential for the survival of Saccharomyces cerevisiae cells. Although the full deletion of all YEATS proteins is lethal in yeast, we show that the viability of cells can be restored by the expression of the YEATS-less version of Taf14 protein. We also explore the in vivo functions of Taf14 protein and show that the primary role of its YEATS domain is to stabilize the transcription pre-initiation complex (PIC). Our results indicate that Taf14-mediated interactions become crucial for PIC formation in rpb9Δ cells, where the recruitment of TFIIF to the PIC is hampered. Although H3 K9 residue has been identified as the interaction site of the Taf14 YEATS domain in vitro, we found that it is not the only interaction target in vivo. CONCLUSIONS: Lethality of YEATS-deficient cells can be rescued by the expression of truncated Taf14 protein lacking the entire YEATS domain, indicating that the YEATS domains are not required for cell survival. The YEATS domain of Taf14 participates in PIC stabilization and acetylated/crotonylated H3K9 is not the critical target of the Taf14 YEATS domain in vivo.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIID/metabolismo , Iniciación de la Transcripción Genética , Sitios de Unión , Histonas/metabolismo , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/genética
12.
Sci Rep ; 8(1): 2949, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440683

RESUMEN

Rpb9 is a non-essential subunit of RNA polymerase II that is involved in DNA transcription and repair. In budding yeast, deletion of RPB9 causes several phenotypes such as slow growth and temperature sensitivity. We found that simultaneous mutation of multiple N-terminal lysines within histone H3 was lethal in rpb9Δ cells. Our results indicate that hypoacetylation of H3 leads to inefficient repair of DNA double-strand breaks, while activation of the DNA damage checkpoint regulators γH2A and Rad53 is suppressed in Rpb9-deficient cells. Combination of H3 hypoacetylation with the loss of Rpb9 leads to genomic instability, aberrant segregation of chromosomes in mitosis, and eventually to cell death. These results indicate that H3 acetylation becomes essential for efficient DNA repair and cell survival if a DNA damage checkpoint is defective.


Asunto(s)
Daño del ADN/genética , Eliminación de Gen , Histonas/metabolismo , ARN Polimerasa II/deficiencia , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Acetilación , Reparación del ADN/genética , Recombinación Homóloga/genética , Mitosis/genética
13.
Sci Rep ; 8(1): 12136, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30108253

RESUMEN

Coordination of DNA replication and cellular redox homeostasis mechanisms is essential for the sustained genome stability due to the sensitivity of replicating DNA to oxidation. However, substantial gaps remain in our knowledge of underlying molecular pathways. In this study, we characterise the interaction of Keap1, a central antioxidant response regulator in Metazoa, with the replicative helicase subunit protein MCM3. Our analysis suggests that structural determinants of the interaction of Keap1 with its critical downstream target - Nrf2 master transactivator of oxidative stress response genes - may have evolved in evolution to mimic the conserved helix-2-insert motif of MCM3. We show that this has led to a competition between MCM3 and Nrf2 proteins for Keap1 binding, and likely recruited MCM3 for the competitive binding dependent modulation of Keap1 controlled Nrf2 activities. We hypothesise that such mechanism could help to adjust the Keap1-Nrf2 antioxidant response pathway according to the proliferative and replicative status of the cell, with possible reciprocal implications also for the regulation of cellular functions of MCM3. Altogether this suggests about important role of Keap1-MCM3 interaction in the cross-talk between replisome and redox homeostasis machineries in metazoan cells.


Asunto(s)
Replicación del ADN , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Componente 3 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Estrés Oxidativo/fisiología , Secuencias de Aminoácidos , Animales , Células CHO , Línea Celular Tumoral , Cricetulus , Evolución Molecular , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/química , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/aislamiento & purificación , Queratinocitos , Componente 3 del Complejo de Mantenimiento de Minicromosoma/química , Componente 3 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 3 del Complejo de Mantenimiento de Minicromosoma/aislamiento & purificación , Factor 2 Relacionado con NF-E2/metabolismo , Cultivo Primario de Células , Unión Proteica/fisiología , Conformación Proteica en Hélice alfa , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Células Sf9 , Spodoptera , Transactivadores/metabolismo
14.
PLoS One ; 10(3): e0120200, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25774516

RESUMEN

Post-translational modifications of core histones play an important role in the epigenetic regulation of chromatin dynamics and gene expression. In Saccharomyces cerevisiae methylation marks at K4, K36, and K79 of histone H3 are associated with gene transcription. Although Set2-mediated H3K36 methylation is enriched throughout the coding region of active genes and prevents aberrant transcriptional initiation within coding sequences, it is not known if transcription of one locus impacts the methylation pattern of neighbouring areas and for how long H3K36 methylation is maintained after transcription termination. Our results demonstrate that H3K36 methylation is restricted to the transcribed sequence only and the modification does not spread to adjacent loci downstream from transcription termination site. We also show that H3K36 trimethylation mark persists in the locus for at least 60 minutes after transcription inhibition, suggesting a short epigenetic memory for recently occurred transcriptional activity. Our results indicate that both replication-dependent exchange of nucleosomes and the activity of histone demethylases Rph1, Jhd1 and Gis1 contribute to the turnover of H3K36 methylation upon shut-down of transcription.


Asunto(s)
Histonas/metabolismo , Metiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ensamble y Desensamble de Cromatina , Regulación Fúngica de la Expresión Génica , Histona Demetilasas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Metilación , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Terminación de la Transcripción Genética
15.
Mol Cell Endocrinol ; 382(1): 292-301, 2014 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-24145128

RESUMEN

Recent advances in establishing the role of the aryl hydrocarbon receptor (Ahr) in normophysiology have discovered its fundamental role, amongst others, in female reproduction. Considering previous studies suggesting the hormonal modulation of Ahr, we aimed to investigate whether in murine granulosa cells (GCs) the gonadotropins regulate Ahr expression and how this is mechanistically implemented. We found that the FSH-like substance--pregnant mare serum gonadotropin--led to stimulation of Ahr expression. More importantly hCG produced relatively rapid reduction of Ahr mRNA in GCs of preovulatory follicles. We show for the first time that LHCGR signaling in regulating the Ahr message involves protein kinase A pathway and is attributable to decreased transcription rate. Finally, we found that Ahr promoter accessibility was decreased by hCG, implicating chromatin remodeling in Ahr gene regulation by LH.


Asunto(s)
Cromatina/metabolismo , Células de la Granulosa/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de HL/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética , Animales , Gonadotropina Coriónica/farmacología , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación Enzimática/efectos de los fármacos , Femenino , Fase Folicular/efectos de los fármacos , Fase Folicular/genética , Regulación de la Expresión Génica/efectos de los fármacos , Células de la Granulosa/efectos de los fármacos , Caballos , Humanos , Ratones , Modelos Biológicos , Embarazo , Biosíntesis de Proteínas/efectos de los fármacos , Estabilidad del ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transcripción Genética/efectos de los fármacos
16.
Biotechniques ; 50(5): 325-8, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21548894

RESUMEN

We have developed a quick and low-cost genomic DNA extraction protocol from yeast cells for PCR-based applications. This method does not require any enzymes, hazardous chemicals, or extreme temperatures, and is especially powerful for simultaneous analysis of a large number of samples. DNA can be efficiently extracted from different yeast species (Kluyveromyces lactis, Hansenula polymorpha, Schizosaccharomyces pombe, Candida albicans, Pichia pastoris, and Saccharomyces cerevisiae). The protocol involves lysis of yeast colonies or cells from liquid culture in a lithium acetate (LiOAc)-SDS solution and subsequent precipitation of DNA with ethanol. Approximately 100 nanograms of total genomic DNA can be extracted from 1 × 10(7) cells. DNA extracted by this method is suitable for a variety of PCR-based applications (including colony PCR, real-time qPCR, and DNA sequencing) for amplification of DNA fragments of ≤ 3500 bp.


Asunto(s)
Acetatos/análisis , Acetatos/química , ADN de Hongos/aislamiento & purificación , ADN de Hongos/metabolismo , Pichia/genética , Dodecil Sulfato de Sodio/análisis , Dodecil Sulfato de Sodio/química , Candida albicans/genética , Kluyveromyces/genética , Reacción en Cadena de la Polimerasa/métodos , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Levaduras/genética
17.
Mol Cell Biol ; 30(6): 1467-77, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20065036

RESUMEN

In Saccharomyces cerevisiae SIR proteins mediate transcriptional silencing, forming heterochromatin structures at repressed loci. Although recruitment of transcription initiation factors can occur even to promoters packed in heterochromatin, it is unclear whether heterochromatin inhibits RNA polymerase II (RNAPII) transcript elongation. To clarify this issue, we recruited SIR proteins to the coding region of an inducible gene and characterized the effects of the heterochromatic structure on transcription. Surprisingly, RNAPII is fully competent for transcription initiation and elongation at the locus, leading to significant loss of heterochromatin proteins from the region. A search for auxiliary factors required for transcript elongation through the heterochromatic locus revealed that two proteins involved in histone H3 lysine 56 acetylation, Rtt109 and Asf1, are needed for efficient transcript elongation by RNAPII. The efficiency of transcription through heterochromatin is also impaired in a strain carrying the K56R mutation in histone H3. Our results show that H3 K56 modification is required for efficient transcription of heterochromatic locus by RNAPII, and we propose that transcription-coupled incorporation of H3 acetylated K56 (acK56) into chromatin is needed for efficient opening of heterochromatic loci for transcription.


Asunto(s)
Heterocromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Acetilación , Fase G1 , Genes Fúngicos/genética , Sitios Genéticos/genética , Nucleosomas/metabolismo , Sistemas de Lectura Abierta , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/citología , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo
18.
Biochem Biophys Res Commun ; 358(2): 666-71, 2007 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-17498649

RESUMEN

Upon transcriptional activation, nucleosomes are removed from not only promoters but also coding regions of highly transcribed genes. However, the mechanisms and factors determining the borders of nucleosome-depleted loci are not known. Here, we identify elongating RNA polymerase II as a major factor for defining the region of nucleosome removal in transcribed genes. We also show that upon shut-down of transcription, newly synthesised histones are used for formation of nucleosomes in the coding region of recently transcribed gene locus.


Asunto(s)
Eliminación de Gen , Nucleosomas/genética , ARN Polimerasa II/genética , Transcripción Genética/genética
19.
Biochem Biophys Res Commun ; 334(2): 386-94, 2005 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-16004968

RESUMEN

Induction of apoptosis is pivotal for eliminating cells with damaged DNA or deregulated proliferation. We show that tumor suppressor ARF and ATM/ATR kinase pathways cooperate in the induction of apoptosis in response to elevated expression of c-myc, beta-catenin or human papilloma virus E7 oncogenes. Overexpression of oncogenes leads to the formation of phosphorylated H2AX foci, induction of Rad51 protein levels and ATM/ATR-dependent phosphorylation of p53. Inhibition of ATM/ATR kinases abolishes both induction of Rad51 and phosphorylation of p53, and remarkably reduces the level of apoptosis induced by co-expression of oncogenes and ARF. However, the induction of apoptosis is downregulated in p53-/- cells and does not depend on activities of ATM/ATR kinases, indicating that efficient induction of apoptosis by oncogene activation depends on coordinated action of ARF and ATM/ATR pathways in the regulation of p53.


Asunto(s)
Apoptosis/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Fibroblastos/metabolismo , Proteínas Oncogénicas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína p14ARF Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Línea Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Humanos , Ratones , Estrés Oxidativo/fisiología
20.
EMBO J ; 23(21): 4243-52, 2004 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-15457216

RESUMEN

The mechanism and kinetics of RNA polymerase II transcription and histone acetylation were studied by chromatin immunoprecipitation in yeast. Our results indicate that a significant fraction of polymerases starting transcription never make it to the end of a long GAL-VPS13 fusion gene. Surprisingly, induction of GAL genes results in substantial loss of histone-DNA contacts not only in the promoter but also in the coding region. The loss of nucleosomes is dependent on active transcript elongation, but apparently occurs independently of histone acetylation. In contrast, histones in genes previously shown to require the histone acetyltransferases GCN5 and ELP3 for normal transcription do not lose DNA contacts, but do become acetylated as a result of transcription. Together, these results suggest the existence of at least two distinct mechanisms to achieve efficient transcript elongation through chromatin: a pathway based on loss of histone-DNA contacts, and a histone acetylation-dependent mechanism correlating with little or no net loss of nucleosomes.


Asunto(s)
Cromatina/metabolismo , Regulación de la Expresión Génica , ARN Polimerasa II/metabolismo , Transcripción Genética , Acetilación , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Galactosa/metabolismo , Genes Supresores , Histona Acetiltransferasas , Histonas/metabolismo , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Proteínas Quinasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA