Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Small ; : e2402410, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38766970

RESUMEN

Lead-free halide perovskites as a new kind of potential candidate for photocatalytic organic synthesis have attracted much attention recently. The rational heterojunction construction is regarded as an efficient strategy to delicately regulate their catalytic performances. Herein, a semi-conductive covalent organic framework (COF) nanosheet, C4N, is employed as the functional component to construct Cs2AgBiCl6/C4N (CABC/C4N) heterojunction. It is found that the C4N nanosheets with rich surface functional groups can serve as heterogeneous nucleation sites to manipulate the growth of CABC nanocrystals and afford close contact between each other, therefore facilitate the transfer and spatial separation of photogenerated charge carriers, as verified by in situ X-ray photoelectronic spectroscopy and Kelvin probe force microscopy. Moreover, the oxygen affinity of C4N endows the heterojunctions with outstanding aerobic reactivity, thus improving the photocatalytic performance largely. The optimal CABC/C4N heterojunction delivers a thioanisole conversion efficiency of 100% after 6 h, which is 2.2 and 7.7-fold of that of CABC and C4N. This work provides a new ideal for the design and application of lead-free perovskite heterojunction photocatalysts for organic reactions.

2.
Small ; 20(15): e2306821, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009496

RESUMEN

Low-dimensional perovskites afford improved stability against moisture, heat, and ionic migration. However, the low dimensionality typically results in a wide bandgap and strong electron-phonon coupling, which is undesirable for optoelectronic applications. Herein, semiconducting A-site organic cation engineering by electron-acceptor bipyridine (bpy) cations (2,2'-bpy2+ and 4,4'-bpy2+) is employed to optimize band structure in low-dimensional perovskites. Benefiting from the merits of lower lowest unoccupied molecular orbital (LUMO) energy for 4,4'-bpy2+ cation, the corresponding (4,4'-bpy)PbI4 is endowed with a smaller bandgap (1.44 eV) than the (CH3NH3)PbI3 (1.57 eV) benchmark. Encouragingly, an intramolecular type II band alignment formation between inorganic Pb-I octahedron anions and bpy2+ cations favors photogenerated electron-hole pairs separation. In addition, a shortening distance between inorganic Pb-I octahedral chains in (4,4'-bpy)PbI4 single crystal (SC) can effectively promote carrier transfer. As a result, a self-powered photodetector based on (4,4'-bpy)PbI4 SC exhibits 131 folds higher on/off ratio (3807) than the counterpart of (2,2'-bpy)2Pb3I10 SC (29). The presented result provides an effective strategy for exporting novel organic cation-based low-dimensional perovskite SC for high-performance optoelectronic devices.

3.
Angew Chem Int Ed Engl ; : e202410514, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38966937

RESUMEN

Organic scintillators are praised for their abundant element reserves, facile preparation procedures, and rich structures. Herein, a new family of highly efficient organic phosphonium halide salts with thermally activated delayed fluorescence (TADF) are designed by innovatively adopting quaternary phosphonium as the electron acceptor, while dimethylamine group and halide anions (I-) serve as the electron donor. The prepared butyl(2-[2-(dimethylamino)phenyl]phenyl)diphenylphosphonium iodide (C4-I) exhibits bright blue emission and an ultra-high photoluminescence quantum yield (PLQY) of 100%. Efficient charge transfer is realized through the unique n-π and anion-π stacking in solid-state C4-I. Photophysical studies of C4-I suggest that the incorporation of I accounts for high intersystem crossing rate (kISC) and reverse intersystem crossing rate (kRISC), suppressing the intrinsic prompt fluorescence and enabling near-pure TADF emission at room temperature. Benefitting from the large Stokes shift, high PLQY, efficient exciton utilization, and remarkable X-ray attenuation ability endowed by I, C4-I delivers an outstanding light yield of 80721 photons/MeV and a low limit of detection (LoD) of 22.79 nGy·s-1. This work would provide a rational design concept and open up an appealing road for developing efficient organic scintillators with tunable emission, strong X-ray attenuation ability, and excellent scintillator performance.

4.
Small ; 19(45): e2302022, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37461242

RESUMEN

Rational design and facile synthesis of efficient environmentally friendly all-inorganic lead-free halide perovskite catalysts are of great significance in photocatalytic CO2 reduction. Aiming at photogenerated charge carrier separation and CO2 reaction dynamics, in this paper, a CsCuCl3 /Cu nanocrystals (NCs) heterojunction catalyst is designed and synthesized via a simple acid-etching solution process by using Cu2 O as the sacrificed template. Due to the disproportionation reaction of Cu2 O induced by concentrated hydrochloric acid, Cu NCs can be deposited onto the surface of CsCuCl3 microcrystals directly and tightly. As revealed by photoelectrochemical analysis, in situ Fourier transform infrared spectra, etc., the Cu NCs contribute a lot to extracting photoelectrons of CsCuCl3 to improve the charge separation efficiency, regulating the CO2 adsorption and activation, and also stabilizing the reaction intermediates. Therefore, CsCuCl3 /Cu heterojunction exhibits a total electron consumption rate of 58.77 µmol g-1 h-1 , which is 2.9-fold of that of single CsCuCl3 . Moreover, high CH4 selectivity of up to 92.7% is achieved, which is much higher than that of CsCuCl3 (50.4%) and most lead-free halide perovskite-based catalysts. This work provides an ingenious but simple strategy to rationally design cocatalysts in situ decorated perovskite catalysts for manipulating both the catalytic activity and the product selectivity.

5.
Angew Chem Int Ed Engl ; 62(7): e202216504, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36504433

RESUMEN

Glass is a group of materials with appealing qualities, including simplicity in fabrication, durability, and high transparency, and they play a crucial role in the optics field. In this paper, a new organic-inorganic metal halide luminescent glass exhibiting >78 % transmittance at 506-800 nm range together with a high photoluminescence quantum yield (PLQY) of 28.5 % is reported through a low-temperature melt-quenching approach of pre-synthesized (HTPP)2 MnBr4 (HTPP=hexyltriphenylphosphonium) single crystal. Temperature-dependent X-ray diffraction, polarizing microscopy, and molecular dynamics simulations were combined to investigate the glass-crystal interconversion process, revealing the disordered nature of the glassy state. Benefiting from the transparent nature, (HTPP)2 MnBr4 glass yields an outstanding spatial resolution of 10 lp mm-1 for X-ray imaging. The superb optical properties and facility of large-scale fabrication distinguish the organic-inorganic metal halide glass as a highly promising class of materials for optical devices.

6.
Inorg Chem ; 61(1): 338-345, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34927416

RESUMEN

Low-dimensional organic-inorganic metal halides have recently emerged as a class of promising luminescent materials. However, the intrinsic toxicity of lead would strongly hamper future application. Herein, we synthesized a new type of lead-free zero-dimensional (0D) antimony-based organic-inorganic metal halide single crystals, (PPZ)2SbCl7·5H2O (PPZ = 1-phenylpiperazine), which features a broadband emission at 720 nm. Ultrafast transient absorption and temperature-dependent photoluminescence (PL) spectra are combined to investigate the PL mechanism, revealing that self-trapped exciton recombination was involved. Furthermore, it is interesting that (PPZ)2SbCl7·5H2O material shows reversible PL emission transformation between red light (720 nm) and yellow light (590 nm) as water molecules are inserted or removed from the lattice. Such reversible emission transformation phenomenon renders the (PPZ)2SbCl7·5H2O as a potential low-cost water sensing material.

7.
Angew Chem Int Ed Engl ; 61(33): e202207985, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35703341

RESUMEN

Though fluorescence-tag-based anti-counterfeiting technology has distinguished itself with cost-effective features and huge information loading capacity, the clonable decryption process of spatial-resolved anti-counterfeiting cannot meet the requirements for high-security-level anti-counterfeiting. Herein, we demonstrate a spatial-time-dual-resolved anti-counterfeiting system based on new organic-inorganic hybrid halides BAPPZn2 (Cly Br1-y )8 (BAPP=1,4-bis(3-ammoniopropyl)piperazinium, y=0-1) with ultra-long room-temperature phosphorescence (RTP). Remarkably, the afterglow lifetime can be facilely tuned by regulating the halide-induced heavy-atom effect and can be identified by the naked eyes or with the help of a simple machine vision system. Therefore, the short-lived unicolor fluorescence and lasting-time-tunable RTP provide the prerequisites for unicolor-time-resolved anti-counterfeiting, which lowers the decryption-device requirements and further provides the design strategy of advanced portable anti-counterfeiting technology.

8.
Angew Chem Int Ed Engl ; 61(29): e202204663, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35527378

RESUMEN

Due to the large distance or weak electronic conjugation between adjacent Bi-I octahedrons, the charge transport in the low-dimensional bismuth-based hybrid perovskites is impeded and thus hinders their future developments. In this work, A-site cation engineering by monoamine BZA (benzylamine) and diamine 3-AMP (3-(aminomethyl)pyridine) has been demonstrated as an efficient strategy to regulate the corresponding activation energy of ionic migration and carrier transport capacity. Given the higher polarity of 3-AMP than BZA, producing a more efficient dielectric screening effect, it gives rise to obtaining the small exciton binding energy (50 meV) and low defect states (3.53×109  cm-3 ). The reduced distance of adjacent Bi-I octahedrons by the bilateral anchoring of the 3-AMP2+ diamine cation enhances both electronic conjugation and charge transport performance. Therefore, the photodetector for (3-AMP)BiI5 SC shows a 243-fold increase in on/off ratio compared with the (BZA)3 BiI6 SC.

9.
Chem Soc Rev ; 49(2): 354-381, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31859320

RESUMEN

The power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) are already higher than those of other thin-film photovoltaic technologies, but the high-efficiency cells are based on complicated device architectures with multiple layers of coating. A promising strategy to commercialize this emerging technology is to simplify the device structure while simultaneously maintaining high-efficiency. Charge transport layers (CTLs) are generally indispensable for achieving high-performance PSCs, but the high cost and possibility of instability hinder the mass production of efficient, stable PSCs in a cost-effective manner. The ambipolar carrier transfer characteristic of perovskite materials makes it possible to fabricate efficient PSCs even in the absence of electron and/or hole transport layers. Encouragingly, the reported PCEs of CTL-free PSCs are already over 20%. However, it is still a mystery about why and how CTL-free devices can work efficiently. Here, we summarize the recent strategies developed to improve the performance of CTL-free PSCs, aiming at strengthening the comprehensive understanding of the fundamental carrier dynamics, heterojunction merits and device physics behind these mysteriously simple yet efficient devices. This review sheds light on identifying the limiting and determining factors in achieving high-efficiency CTL-free devices, and proposes some empirical charge transport models (e.g. p-type doping of perovskites for HTL-free PSCs, n-type doping of perovskites for ETL-free PSCs, constructing efficient p-n heterojunctions and/or homojunctions at one side/interface or employing perovskite single crystal-based lateral geometry for both HTL and ETL-free PSCs, etc.) that are useful to further improve device performance. In addition, an insightful perspective for the future design and commercial development of large-scale, efficient and stable optoelectronic devices by employing carbon electrodes is provided.

10.
Acc Chem Res ; 52(3): 633-644, 2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30668116

RESUMEN

The utilization of solar energy and the development of its related optoelectronic devices have become more important than ever. Solar cells or photoelectrochemical (PEC) cells that require the design of light harvesting assemblies for efficiently converting solar light into electricity or solar fuels are of particular interest. Semiconductor TiO2, serving as the photoelectrode for photovoltaic devices (e.g., dye- or quantum dot-sensitized solar cells (DSSCs/QDSSCs) or perovskite solar cells (PSCs)) and PEC cells, has aroused intense research interest owing to its inherent characteristics of wide band gap and promising optical and electrical properties. TiO2 nanowires (TNWs) have been widely used in optoelectronic devices due to their unique 1D geometry and salient optical and electrical properties. However, the insufficient surface area resulting from the relatively large diameter of NWs and considerable free space between adjacent NWs restricts their optoelectronic performance. Hence, it is desirable to explore every feasible aspect of TNWs in terms of structural design and optical management, aiming to further improve the performance of optoelectronic devices. In this Account, we present a brief survey of strategies for designing branched or hyperbranched TNW-based photoelectrodes and their applications in solar cells and PEC cells. The general strategies (e.g., alkaline/acid hydrothermal method, lift-off transfer, and self-assembly approach) are discussed to address the challenges associated with fabricating TNWs on transparent conducting oxide (TCO) substrates. A series of strategies to fabricate judiciously designed 3D branched array architectures, including length tuning and sequential surface branched or hyperbranched modification, are proposed. The versatile implantation of the TNWs onto other backbones (nanosheets, nanotubes, hollow spheres, or multilayered electrodes) and substrates (fiber-shaped metal wire or mesh, flexible metal foil, or plastic sheet) is demonstrated to construct a new class of the TNW-embedded composite electrode materials with desired morphological characteristics and optoelectronic properties, for example, favorable energy level alignment for cascade charge transfer and rational homogeneous/heterogeneous interfacial engineering. The functionalities of TNW-based electrodes include enlarged surface area and superior light scattering for maximized light harvesting, as well as facilitated charge transport and suppressed charge recombination for enhanced charge collection, which are promising in optoelectronic fields such as solar cells, photocatalysis, and PEC cells. Beyond TNWs, one can also integrate other types of semiconductor (e.g., Fe2O3 or WO3) NWs into rationally designed structures for preparing novel photocatalytic materials with panchromatic absorption, efficient charge transfer, and excellent catalytic properties. Finally, an insightful perspective for rational design of advanced NW-based materials is provided.

11.
J Am Chem Soc ; 141(34): 13434-13441, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31378058

RESUMEN

Heterojunction engineering has played an indispensable role in the exploitation of innovative artificial materials with exceptional properties and has consequently triggered a new revolution in achieving high-performance optoelectronic devices. Herein, an intriguing halide perovskite (PVK) and metal dichalcogenide (MD) heterojunction, i.e., a lead-free Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet hybrid, was fabricated in situ for the first time. Comprehensive investigations with experimental characterizations and theoretical calculations demonstrate that cosharing of the Sn atom enables intimate contact in the Cs2SnI6/SnS2 hybrid together with a type II band alignment structure. Additionally, ultrafast carrier separation between SnS2 and Cs2SnI6 has been observed in the Cs2SnI6/SnS2 hybrid by transient absorption measurements, which efficiently prolongs the lifetime of the photogenerated electrons in SnS2 (from 1290 to 3080 ps). The resultant spatial charge separation in the Cs2SnI6/SnS2 hybrid evidenced by Kelvin probe force microscopy (KPFM) significantly boosts the photocatalytic activity toward CO2 reduction and the photoelectrochemical performance, with 5.4-fold and 10.6-fold enhancements compared with unadorned SnS2. This work provides a facile and effective method for the in situ preparation of PVK-MD heterojunctions, which may significantly stimulate the synthesis of various perovskite-based hybrid materials and their further optoelectronic applications.

12.
Small ; 15(16): e1900606, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30913374

RESUMEN

Ordered 1D metal oxide structure is desirable in thin film solar cells owing to its excellent charge collection capability. However, the electron transfer in 1D electron transporting layer (ETL)-based devices is still limited to a submicrometer-long pathway that is vertical to the substrate. Here, an innovative closely packed rutile TiO2 nanowire (CRTNW) network parallel to the facet of fluorine-doped tin oxide (FTO) substrate is reported, which can serve as a 1D nanoscale electron transport pathway for efficient perovskite solar cells (PSCs). The PSC constructed using newly prepared CRTNW ETL achieves an impressive power conversion efficiency of 21.10%, which can be attributed to the facilitated electron extraction induced by the favorable junctions formed at FTO/ETL and ETL/perovskite interfaces and also the suppressed charge recombination originating from improved perovskite morphology with large grains, flat surface, and good surface coverage. The bifacial contact junctions engineering also enables large-area device fabrication. The PSC with 1 cm2 aperture yields an efficiency of 19.50% under one sun illumination. This work highlights the significance of controlling the orientation and packing density of the ordered 1D oxide nanostructured thin films for highly efficient optoelectronic devices in a large-scale manner.

13.
Angew Chem Int Ed Engl ; 58(43): 15435-15440, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31448499

RESUMEN

Low-dimensional lead halide perovskite materials recently have drawn much attention owing to the intriguing broadband emissions; however, the toxicity of lead will hinder their future development. Now, a lead-free (C4 H14 N2 )2 In2 Br10 single crystal with a unique zero-dimensional (0D) structure constituted by [InBr6 ]3- octahedral and [InBr4 ]- tetrahedral units is described. The single crystal exhibits broadband photoluminescence (PL) that spans almost the whole visible spectrum with a lifetime of 3.2 µs. Computational and experimental studies unveil that an excited-state structural distortion in [InBr6 ]3- octahedral units enables the formation of intrinsic self-trapped excitons (STEs) and thus contributing the broad emission. Furthermore, femtosecond transient absorption (fs-TA) measurement reveals that the ultrafast STEs formation together with an efficient intersystem crossing has made a significant contribution to the long-lived and broad STE-based emission behavior.

14.
Angew Chem Int Ed Engl ; 58(16): 5277-5281, 2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-30788885

RESUMEN

Low-dimensional luminescent lead halide perovskites have attracted tremendous attention for their fascinating optoelectronic properties, while the toxicity of lead is still considered a drawback. Herein, we report a novel lead-free zero-dimensional (0D) indium-based perovskite (Cs2 InBr5 ⋅H2 O) single crystal that is red-luminescent with a high photoluminescence quantum yield (PLQY) of 33 %. Experimental and computational studies reveal that the strong PL emission might originate from self-trapping excitons (STEs) that result from an excited-state structural deformation. More importantly, the in situ transformation between hydrated Cs2 InBr5 ⋅H2 O and the dehydrated form is accompanied with a switchable dual emission, which enables it to act as a PL water-sensor in humidity detection or the detection of traces of water in organic solvents.

15.
Small ; 14(11): e1703762, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29380522

RESUMEN

Lead halide perovskite nanocrystals (NCs) have demonstrated great potential as appealing candidates for advanced optoelectronic applications. However, the toxicity of lead and the intrinsic instability toward moisture hinder their mass production and commercialization. Herein, to solve such thorny problems, novel lead-free Cs2 AgBiBr6 double perovskite NCs fabricated via a simple hot-injection method are reported, which exhibit impressive stability in moisture, light, and temperature. Such materials are then applied into photocatalytic CO2 reduction, achieving a total electron consumption of 105 µmol g-1 under AM 1.5G illumination for 6 h. This study offers a reliable avenue for Cs2 AgBiBr6 perovskite nanocrystals preparation, which holds a great potential in the further photochemical applications.

16.
J Am Chem Soc ; 139(16): 5660-5663, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28385017

RESUMEN

Halide perovskite quantum dots (QDs), primarily regarded as optoelectronic materials for LED and photovoltaic devices, have not been applied for photochemical conversion (e.g., water splitting or CO2 reduction) applications because of their insufficient stability in the presence of moisture or polar solvents. Herein, we report the use of CsPbBr3 QDs as novel photocatalysts to convert CO2 into solar fuels in nonaqueous media. Under AM 1.5G simulated illumination, the CsPbBr3 QDs steadily generated and injected electrons into CO2, catalyzing CO2 reduction at a rate of 23.7 µmol/g h with a selectivity over 99.3%. Additionally, through the construction of a CsPbBr3 QD/graphene oxide (CsPbBr3 QD/GO) composite, the rate of electron consumption increased 25.5% because of improved electron extraction and transport. This study is anticipated to provide new opportunities to utilize halide perovskite QD materials in photocatalytic applications.

17.
J Am Chem Soc ; 136(17): 6437-45, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24725076

RESUMEN

An unprecedented attempt was conducted on suitably functionalized integration of three-dimensional hyperbranched titania architectures for efficient multistack photoanode, constructed via layer-by-layer assembly of hyperbranched hierarchical tree-like titania nanowires (underlayer), branched hierarchical rambutan-like titania hollow submicrometer-sized spheres (intermediate layer), and hyperbranched hierarchical urchin-like titania micrometer-sized spheres (top layer). Owing to favorable charge-collection, superior light harvesting efficiency and extended electron lifetime, the multilayered TiO2-based devices showed greater J(sc) and V(oc) than those of a conventional TiO2 nanoparticle (TNP), and an overall power conversion efficiency of 11.01% (J(sc) = 18.53 mA cm(-2); V(oc) = 827 mV and FF = 0.72) was attained, which remarkably outperformed that of a TNP-based reference cell (η = 7.62%) with a similar film thickness. Meanwhile, the facile and operable film-fabricating technique (hydrothermal and drop-casting) provides a promising scheme and great simplicity for high performance/cost ratio photovoltaic device processability in a sustainable way.

18.
Angew Chem Int Ed Engl ; 53(19): 4816-21, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24677777

RESUMEN

Light-harvesting and charge collection have attracted increasing attention in the domain of photovoltaic cells, and can be facilitated dramatically by appropriate design of a photonic nanostructure. However, the applicability of current light-harvesting photoanode materials with single component and/or morphology (such as, particles, spheres, wires, sheets) is still limited by drawbacks such as insufficient electron-hole separation and/or light-trapping. Herein, we introduce a universal method to prepare hierarchical assembly of macroporous material-nanowire coated homogenous or heterogeneous metal oxide composite electrodes (TiO2 -TiO2 , SnO2 -TiO2 , and Zn2 SnO4 -TiO2 ; homogenous refers to a material in which the nanowire and the macroporous material have the same composition, i.e. both are TiO2 . Heterogeneous refers to a material in which the nanowires and the macroporous material have different compositions). The dye-sensitized solar cell based on a TiO2 -macroporous material-TiO2 -nanowire homogenous composition electrode shows an impressive conversion efficiency of 9.51 %, which is much higher than that of pure macroporous material-based photoelectrodes to date.

19.
Sci Adv ; 10(20): eadn1095, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38748790

RESUMEN

Fiber light-emitting diodes (Fi-LEDs), which can be used for wearable lighting and display devices, are one of the key components for fiber/textile electronics. However, there exist a number of impediments to overcome on device fabrication with fiber-like substrates, as well as on device encapsulations. Here, we uniformly grew all-inorganic perovskite quantum wire arrays by filling high-density alumina nanopores on the surface of Al fibers with a dip-coating process. With a two-step evaporation method to coat a surrounding transporting layer and semitransparent electrode, we successfully fabricated full-color Fi-LEDs with emission peaks at 625 nanometers (red), 512 nanometers (green), and 490 nanometers (sky-blue), respectively. Intriguingly, additional polydimethylsiloxane packaging helps instill the mechanical bendability, stretchability, and waterproof feature of Fi-LEDs. The plasticity of Al fiber also allows the one-dimensional architecture Fi-LED to be shaped and constructed for two-dimensional or even three-dimensional architectures, opening up a new vista for advanced lighting with unconventional formfactors.

20.
Phys Chem Chem Phys ; 15(28): 11909-17, 2013 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-23764958

RESUMEN

Starburst triarylamine-based organic dyes (D1, D2, and D3) have been synthesized. For the three designed dyes, the starburst triarylamine group, thiophene (or 3,4-ethylenedioxythiophene), and cyanoacetic acid take the role of electron donor, π-conjugation bridge, and electron acceptor, respectively. These compounds are characterized by photophysical, electrochemical, and theoretical computational methods. Nanocrystalline TiO2-based dye-sensitized solar cells were fabricated using these molecules as light-harvesting sensitizers. The overall efficiencies of the sensitized cells range from 5.48 to 6.15%. It was found that the introduction of the EDOT group in D3 bathochromically extended the absorption spectra, resulting in a leap in the photovoltaic performance in comparison to D2. Incorporation of a hydrophobic carbazole-containing segment at D2 relative with D1 retarded the electron transfer from TiO2 to the oxidized dye or electrolyte, leading to an increase of electron lifetime.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA