Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharm Res ; 37(7): 136, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32642838

RESUMEN

PURPOSE: The goal of the study was to elucidate the structure of a new degradant (1,3'-Dimer), generated in the stability testing of ropinirole extended-release tablets, and the formation mechanism of 1,3'-Dimer and its isomer (3,3'-Dimer). METHODS: The strategy of combining LC-PDA/UV-MSn (n = 1, 2) and NMR in conjunction with mechanism-based forced degradation study was employed to identify the structure of the unknown degradant and the formation mechanism of this dimeric degradant as well as its isomer, 3,3'-Dimer. The forced degradation was conducted by treating ropinirole API with formaldehyde under alkaline catalysis. A compatibility study between ropinirole and lactose was also performed. RESULTS: The degradant was isolated from the forced degradation sample and characterized by LC-PDA/UV-MSn as well as NMR measurement. The impurity was identified as a new dimeric degradant of ropinirole connected by a methylene bridge via the 1- and 3'-position of each ropinirole unit (i.e., 1,3'-Dimer of ropinirole), which is an isomer of a known dimeric degradant of ropinirole, namely 3,3'-Dimer. CONCLUSIONS: The newly occurred unknown degradant in ropinirole extended-release tablets was elucidated as the methylene-bridged 1,3'-Dimer of ropinirole. Based on the mechanistic study, 1,3'-Dimer and its isomer (3,3'-Dimer) were both formed by the reaction of ropinirole with residual formaldehyde present or formed in lactose, a main excipient of the formulation.


Asunto(s)
Indoles/química , Preparaciones de Acción Retardada , Dimerización , Composición de Medicamentos , Estabilidad de Medicamentos , Excipientes/química , Formaldehído/química , Cinética , Lactosa/química , Estructura Molecular , Agua/química
2.
J Mass Spectrom ; 57(7): e4871, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35739062

RESUMEN

Lurasidone is an antipsychotic drug clinically used for the treatment of schizophrenia and bipolar disorder. During a mechanism-based forced degradation study of lurasidone, two novel degradation products were observed under free radical-mediated oxidative (via AIBN) and solution photolytic conditions. The structures of the two novel degradants were identified through an approach combining HPLC, LC-MSn (n = 1, 2), preparative HPLC purification and NMR spectroscopy. The degradant formed under the free radical-mediated condition is an oxidative degradant with half of the piperazine ring cleaved to form two formamides; a mechanism is proposed for the formation of the novel N,N'-diformyl degradant, which should be readily applicable to other drugs that contain a piperazine moiety that is widely present in drug molecules. The degradant observed under the solution photolytic condition is identified as the photo-induced isomer of lurasidone with the benzisothiazole ring altered into a benzothiazole ring.


Asunto(s)
Clorhidrato de Lurasidona , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Estabilidad de Medicamentos , Radicales Libres , Espectroscopía de Resonancia Magnética/métodos , Estrés Oxidativo , Piperazinas/química , Espectrometría de Masas en Tándem/métodos
3.
Int J Pharm ; 575: 118910, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31805310

RESUMEN

During the pharmaceutical development of pregabalin extended-release tablets, an unknown degradant at a relative retention time (RRT) of 11.7 was observed and its nominal amount exceeded the ICH identification threshold in an accelerated stability study. The aim of this study is to identify the structure and investigate the formation mechanism of this impurity for the purpose of developing a chemically stable pharmaceutical product. By utilizing multi-stage LC-MS analysis in conjunction with mechanism-based stress study, the structure of the RRT 11.7 impurity was rapidly identified as a dimeric degradant that is caused by dimerization of two pregabalin molecules with a methylene bridging the two pregabalin moieties. The structure of the dimer was confirmed by 1D and 2D NMR measurement. The formation pathway of the dimeric degradant was also inferred from the mechanism-based stress study, which implicated that the bridging methylene could originate from formaldehyde which might be the culprit that triggers the dimerization in the first place. The subsequent API-excipients compatibility study indicated that the degradant was indeed formed in the compatibility experiments between pregabalin API and two polymeric excipients (PEO and PVPP) that are known to contain residual formaldehyde, but only in the co-presence of another excipient, colloidal silicon dioxide (SiO2). The kinetic behavior of the degradant formation was also investigated and two kinetic models were utilized based on the Arrhenius and Eyring equations, respectively, to calculate the activation energy (Ea) as well as the enthalpy of activation (△H‡), entropy of activation (△S‡), and Gibbs free energy (△G‡) of the degradation reaction. The results of this study would be useful for the understanding of similar dimeric degradant formation in finished products of drug substances containing primary or secondary amine moieties.


Asunto(s)
Contaminación de Medicamentos , Pregabalina/química , Cromatografía Líquida de Alta Presión , Preparaciones de Acción Retardada/química , Estabilidad de Medicamentos , Excipientes/química , Espectrometría de Masas , Estructura Molecular , Polietilenglicoles/química , Povidona/análogos & derivados , Povidona/química , Dióxido de Silicio/química , Comprimidos
4.
J Med Chem ; 62(21): 9642-9657, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31603674

RESUMEN

Glutaminase (GLS1) is a cancer energy metabolism protein which plays a predominant role in cell growth and proliferation. Because of its major involvement in malignant tumor, small-molecule GLS1 inhibitors are urgently needed to assess its therapeutic potential and for probing their underlying biology function. Recent studies showed that targeting the allosteric binding site represented a promising strategy for identifying potent and selective GLS1 inhibitors. Herein, we present the synthesis of two fluorescent probes targeting the allosteric binding site of GLS1 and their usage as mechanistic tools in multiple applicable assay platform. The fluorescence polarization (FP)-based binding assay enables easy, fast, and reliable screen of allosteric inhibitors from our in-house compound library obtained through click chemistry method. The obtained compound C147 (named as CPU-L1) has been proved to be more potent and with greater solubility than the control compound CB839, which could serve as promising leads for further optimization as novel GLS1 inhibitors.


Asunto(s)
Colorantes Fluorescentes/química , Glutaminasa/química , Glutaminasa/metabolismo , Ensayos Analíticos de Alto Rendimiento , Regulación Alostérica/efectos de los fármacos , Línea Celular Tumoral , Humanos , Albúmina Sérica Bovina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA