Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant J ; 104(3): 752-767, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32799357

RESUMEN

We report on the homo- and hetero-transglycosylation activities of the HvXET3 and HvXET4 xyloglucan xyloglucosyl transferases (XET; EC 2.4.1.207) from barley (Hordeum vulgare L.), and the visualisation of these activities in young barley roots using Alexa Fluor 488-labelled oligosaccharides. We discover that these isozymes catalyse the transglycosylation reactions with the chemically defined donor and acceptor substrates, specifically with the xyloglucan donor and the penta-galacturonide [α(1-4)GalAp]5 acceptor - the homogalacturonan (pectin) fragment. This activity is supported by 3D molecular models of HvXET3 and HvXET4 with the docked XXXG donor and [α(1-4)GalAp]5 acceptor substrates at the -4 to +5 subsites in the active sites. Comparative sequence analyses of barley isoforms and seed-localised TmXET6.3 from nasturtium (Tropaeolum majus L.) permitted the engineering of mutants of TmXET6.3 that could catalyse the hetero-transglycosylation reaction with the xyloglucan/[α(1-4)GalAp]5 substrate pair, while wild-type TmXET6.3 lacked this activity. Expression data obtained by real-time quantitative polymerase chain reaction of HvXET transcripts and a clustered heatmap of expression profiles of the gene family revealed that HvXET3 and HvXET6 co-expressed but did not share the monophyletic origin. Conversely, HvXET3 and HvXET4 shared this relationship, when we examined the evolutionary history of 419 glycoside hydrolase 16 family members, spanning monocots, eudicots and a basal Angiosperm. The discovered hetero-transglycosylation activity in HvXET3 and HvXET4 with the xyloglucan/[α(1-4)GalAp]5 substrate pair is discussed against the background of roles of xyloglucan-pectin heteropolymers and how they may participate in spatial patterns of cell wall formation and re-modelling, and affect the structural features of walls.


Asunto(s)
Pared Celular/metabolismo , Glucanos/metabolismo , Glicosiltransferasas/metabolismo , Hordeum/metabolismo , Oligosacáridos/metabolismo , Xilanos/metabolismo , Aniones/metabolismo , Dominio Catalítico , Fluoresceínas/química , Glicosilación , Glicosiltransferasas/química , Glicosiltransferasas/genética , Hordeum/citología , Hordeum/genética , Concentración de Iones de Hidrógeno , Modelos Moleculares , Familia de Multigenes , Oligosacáridos/química , Pectinas/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Especificidad por Sustrato , Ácidos Sulfónicos/química
2.
Ecotoxicology ; 29(7): 987-1002, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32623602

RESUMEN

Cadmium-tolerant plants were studied for their possible usage in phytoremediation techniques. However, their response to cadmium cations at a cellular level has not been properly studied. Silicon is a beneficial element that seems to change the plant's response to the Cd2+ presence. The aim of the present study was to investigate the Cd2+ tolerance patterns of poplar callus cells exposed to Cd+2 and/or Si over short and long cultivation periods. We determined the growth parameters of the callus, the growth dynamics, cell vitality, photosynthetic pigment concentrations and the activity of antioxidant enzymes. The effects were studied over short (21 days) and long (63 days) cultivation periods. The most important result proved that the poplar callus tissue is able to build up a tolerance to Cd2+ after a longer cultivation period. On the 63rd day of the cultivation, Cd2+ stressed calli showed improvement in studied parameters and the callus cells accumulated Cd2+ more efficiently than on the 21st day. Supplementation with Si in higher concentrations (2.5 mM and 5 mM) heightened the Cd-tolerance potential of the tissue. The treatment of Cd2+, and Si in a 2.5 mM concentration was the most efficient variant for Cd2+ removal from medium. The activity of antioxidant enzymes showed that poplar callus cells effectively develop tolerance against Cd2+ after a longer cultivation period.


Asunto(s)
Cadmio/efectos adversos , Populus/efectos de los fármacos , Silicio/efectos adversos , Contaminantes del Suelo/efectos adversos , Antioxidantes/metabolismo , Fotosíntesis , Populus/crecimiento & desarrollo , Populus/metabolismo
3.
Plants (Basel) ; 10(11)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34834862

RESUMEN

Auxins are plant hormones that affect plant growth, development, and improve a plant's tolerance to stress. In this study, we found that the application of indole-3-butyric acid (IBA) had diverse effects on the growth of maize (Zea mays L.) roots treated without/with Cd. IBA caused changes in the growth and morphology of the roots under non-stress conditions; hence, we were able to select two concentrations of IBA (10-11 M as stimulatory and 10-7 M as inhibitory). IBA in stimulatory concentration did not affect the concentration of H2O2 or the activity of antioxidant enzymes while IBA in inhibitory concentration increased only the concentration of H2O2 (40.6%). The application of IBA also affected the concentrations of mineral nutrients. IBA in stimulatory concentration increased the concentration of N, K, Ca, S, and Zn (5.8-14.8%) and in inhibitory concentration decreased concentration of P, K, Ca, S, Fe, Mn, Zn, and Cu (5.5-36.6%). Moreover, IBA in the concentration 10-9 M had the most positive effects on the plants cultivated with Cd. It decreased the concentration of H2O2 (34.3%), the activity of antioxidant enzymes (23.7-36.4%), and increased the concentration of all followed elements, except Mg (5.5-34.1%), when compared to the Cd.

4.
Environ Sci Pollut Res Int ; 27(3): 2857-2867, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31836986

RESUMEN

One of the major reasons why cadmium is toxic in plants is because it disturbs their nutrient balance. The aim of this work is to investigate the effects of cadmium (Cd) and/or silicon (Si) on the nutrient status of poplar callus cells after 3 and after 9 weeks of Cd exposure and to study its possible relationship with the changes in the fresh and dry mass, the plasma membrane integrity, and cadmium tolerance patterns. A principal component analysis (PCA) was performed to reveal the associations among the elements, and the variability between both treatments, and between the 3- and 9-week stages. Cadmium reduced the fresh and dry mass, the plasma membrane integrity, and the concentration of all nutrients except for P. After 9 weeks of exposure, the Cd concentration in callus cells had almost doubled, in spite of an improvement in all studied parameters. These changes may be due to the callus acclimatizing to the Cd stress. In the Cd + Si treatment, the fresh and dry mass, the plasma membrane integrity, and the concentration of nutrients, as well as the growth tolerance index, increased in comparison with the Cd treatment. We assumed that the enhancement in the plasma membrane integrity mediated by Si under Cd stress had caused the improvement in the uptake of nutrients and, consequently, the fresh and dry mass of callus cells had increased. The reduction in Cd concentration due to the Si impact also contributed to the increase in fresh and dry mass.


Asunto(s)
Cadmio , Homeostasis/efectos de los fármacos , Silicio , Populus
5.
Environ Sci Pollut Res Int ; 24(18): 15340-15346, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28502051

RESUMEN

Effect of cadmium cations and their interaction with silicon cations was determined in poplar calli and expressed as changes in callus growth, cell viability and cadmium cation accumulation. Cell viability throughout culture versus cadmium cation accumulation in cells is discussed. At the same time, the study sought appropriate methods for cadmium cation detection in callus cells and also in experiments with low plant material (e.g. protoplasts). Cadmium cations were determined by atomic absorption spectroscopy and using fluorescence microscopy with a specific cadmium cation fluorescent dye. The detection of cadmium cations in callus cells by the latter method appears suitable because the callus cells are surrounded by primary cell walls without auto-fluorescence and these values fit well with atomic absorption spectroscopy quantification. However, the visualisation method has some limits discussed below.


Asunto(s)
Cadmio/farmacocinética , Populus/efectos de los fármacos , Contaminantes del Agua/farmacocinética , Cadmio/toxicidad , Pared Celular , Protoplastos , Contaminantes del Agua/toxicidad
6.
Plant Physiol Biochem ; 98: 155-61, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26691060

RESUMEN

Galactoglucomannan oligosaccharides (GGMOs) are signalling molecules originating from plant cell walls influencing plant growth and defence reactions. The present study focused on their interaction with exogenous IAA (indole-3-acetic acid). GGMOs acted as auxin antagonists and diminished the effect of IAA on Arabidopsis primary root growth. Their effect is associated with meristem enlargement and prolongation of the elongation zone. Reduction of the elongation zone was a consequence of the IAA action, but IAA did not affect the size of the meristem. In the absence of auxin, GGMOs stimulated root growth, meristem enlargement and elongation zone prolongation. It is assumed that the effect of GGMOs in the absence of exogenous auxin resulted from their interaction with the endogenous form. In the presence of auxin transport inhibitor GGMOs did not affect root growth. It is known that flavonoids are auxin transport modulators but this is the first study suggesting the role of flavonoids in GGMOs' signalling. The accumulation of flavonoids in the meristem and elongation zone decreased in GGMOs' treatments in comparison with the control. These oligosaccharides also diminished the effect of IAA on the flavonoids' elevation. The fact that GGMOs decreased the accumulation of flavonoids, known to be modulators of auxin transport, and the loss of GGMOs' activity in the presence of the auxin transport inhibitor indicates that the root growth stimulation caused by GGMOs could be related to changes in auxin transport, possibly mediated by flavonoids.


Asunto(s)
Arabidopsis/metabolismo , Flavonoides/metabolismo , Ácidos Indolacéticos/farmacología , Mananos/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Transporte Biológico/efectos de los fármacos , Fluorescencia , Meristema/efectos de los fármacos , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Oligosacáridos/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transducción de Señal
7.
Plant Physiol Biochem ; 108: 90-98, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27423219

RESUMEN

Some physiological parameters and composition of the root cell walls of two maize hybrids (monocots), the sensitive Novania and the tolerant Almansa were studied after treatment with cadmium cations. After 10 days of Cd2+ treatment (1 × 10-5 M and 5 × 10-5 M), plant growth inhibition, in the sensitive hybrid in particular, as well as a certain alteration in root structure and pigment content were observed. The Cd2+ accumulation was ten times higher in the roots than in the shoots. Chemical analyses and atomic absorption spectroscopy proved that Cd2+ modified the composition of the root cell walls by a significant increase in the content of alkali-soluble polysaccharide fractions, particularly in the tolerant hybrid. An increase in the content of phenolic compounds, mainly in the tolerant hybrid, and a decrease in protein content were observed in the presence of Cd2+ in the alkali fractions. The results indicate that the changes in the cell wall polysaccharide fractions and their proportion to lignin and cellulose are obviously involved in the tolerance and/or defence against Cd2+ of the maize hybrids studied.


Asunto(s)
Cadmio/farmacocinética , Cadmio/toxicidad , Zea mays/efectos de los fármacos , Zea mays/genética , Pared Celular/química , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Celulosa/metabolismo , Quimera , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Lignina/metabolismo , Monosacáridos/análisis , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Zea mays/metabolismo
8.
J Plant Physiol ; 171(7): 518-24, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24655387

RESUMEN

Our study focused on the mediatory role of galactoglucomannan oligosaccharides (GGMOs) in plant protection against cadmium stress, examined mainly on the primary root growth of Arabidopsis thaliana. The application of GGMOs diminished the negative effect of cadmium on root length, root growth dynamics and also on photosynthetic pigment content. We tested the hypothesis that the effect of GGMOs is associated with decreased cadmium accumulation or its modified distribution. Cadmium distribution was observed chronologically from the first day of plant culture and depended on the duration of cadmium treatment. First, cadmium was stored in the root and hypocotyl and later transported by xylem to the leaves and stored there in trichomes. The protective effect of GGMOs was not based on modified cadmium distribution or its decreased accumulation. In cadmium and GGMOs+cadmium-treated plants, the formation of suberin lamellae was shifted closer to the root apex compared to the control and GGMOs. No significant changes between cadmium and GGMOs+cadmium variants in suberin lamellae development corresponded with any differences in cadmium uptake. GGMOs also stimulated Arabidopsis root growth under non-stress conditions. In this case, suberin lamellae were developed more distantly from the root apex in comparison with the control. Faster solute and water transport could explain the faster plant growth induced by GGMOs. Our results suggest that, in cadmium-stressed plants, GGMOs' protective action is associated with the response at the metabolic level.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Cadmio/toxicidad , Mananos/metabolismo , Estrés Fisiológico , Biomarcadores/metabolismo , Cadmio/farmacocinética , Contaminantes Ambientales/toxicidad , Oligosacáridos/metabolismo , Pigmentos Biológicos/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Estrés Fisiológico/efectos de los fármacos
9.
Plant Physiol Biochem ; 57: 154-8, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22705590

RESUMEN

Biologically active galactoglucomannan oligosaccharides (GGMOs) alone or in combination with IBA stimulate primary root elongation and inhibit hypocotyl elongation in mung bean (Vigna radiata (L.) Wilczek) seedlings. For a more detailed view of GGMOs effect in these processes, the present work is focused on cell growth in selected tissues (epidermis and primary cortex) and on xylem formation. The GGMOs effect on tissue level has not been studied so far. The results show that GGMOs-induced stimulation of primary root growth is mainly caused by enhancing cell elongation (and in less extent by cell production rate) in all tissues observed. Xylem elements were formed at longer distance from the root tip than in the control. In hypocotyl GGMOs reduced cell elongation. IBA in roots caused decrease of cell elongation and cell production rate and acceleration of xylem maturation; in hypocotyls IBA strongly stimulated cell elongation. Application of GGMOs with IBA resulted in increase of cell elongation, cell production rate and delay of xylem maturation in roots. In GGMOs + IBA treated hypocotyls, cell length was decreased to 50% compared to IBA. Based on our results it can be concluded that GGMOs induced elongation growth in mung bean seedlings was caused by increased cell production rate and cell elongation and was accompanied with delay of xylem maturation.


Asunto(s)
Fabaceae/citología , Fabaceae/efectos de los fármacos , Mananos/farmacología , Epidermis de la Planta/citología , Plantones/citología , Plantones/efectos de los fármacos , Hipocótilo/citología , Hipocótilo/efectos de los fármacos , Indoles/farmacología , Epidermis de la Planta/efectos de los fármacos , Xilema/citología , Xilema/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA