Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 107(4): 1269-1284, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36648525

RESUMEN

The oleaginous yeast Lipomyces starkeyi has considerable potential in industrial application, since it can accumulate a large amount of triacylglycerol (TAG), which is produced from sugars under nitrogen limitation condition. However, the regulation of lipogenesis in L. starkeyi has not been investigated in depth. In this study, we compared the genome sequences of wild-type and mutants with increased TAG productivity, and identified a regulatory protein, LsSpt23p, which contributes to the regulation of TAG synthesis in L. starkeyi. L. starkeyi mutants overexpressing LsSPT23 had increased TAG productivity compared with the wild-type strain. Quantitative real-time PCR analysis showed that LsSpt23p upregulated the expression of GPD1, which encodes glycerol 3-phosphate dehydrogenase; the Kennedy pathway genes SCT1, SLC1, PAH1, DGA1, and DGA2; the citrate-mediated acyl-CoA synthesis pathway-related genes ACL1, ACL2, ACC1, FAS1, and FAS2; and OLE1, which encodes ∆9 fatty acid desaturase. Chromatin immunoprecipitation-quantitative PCR assays indicated that LsSpt23p acts as a direct regulator of SLC1 and PAH1, all the citrate-mediated acyl-CoA synthesis pathway-related genes, and OLE1. These results indicate that LsSpt23p regulates TAG synthesis. Phosphatidic acid is a common substrate of phosphatidic acid phosphohydrolase, which is used for TAG synthesis, and phosphatidate cytidylyltransferase 1 for phospholipid synthesis in the Kennedy pathway. LsSpt23p directly regulated PAH1 but did not affect the expression of CDS1, suggesting that the preferred route of carbon is the Pah1p-mediated TAG synthesis pathway under nitrogen limitation condition. The present study contributes to understanding the regulation of TAG synthesis, and will be valuable in future improvement of TAG productivity in oleaginous yeasts. KEY POINTS: LsSpt23p was identified as a positive regulator of TAG biosynthesis LsSPT23 overexpression enhanced TAG biosynthesis gene expression and TAG production LsSPT23M1108T overexpression mutant showed fivefold higher TAG production than control.


Asunto(s)
Lipogénesis , Levaduras , Lipogénesis/genética , Triglicéridos , Citratos , Nitrógeno
2.
Biosci Biotechnol Biochem ; 85(8): 1899-1909, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34124766

RESUMEN

Light stimulates carotenoid production in an oleaginous yeast Rhodosporidium toruloides NBRC 10032 by promoting carotenoid biosynthesis genes. These genes undergo two-step transcriptional activation. The potential light regulator, Cryptochrome DASH (CRY1), has been suggested to contribute to this mechanism. In this study, based on KU70 (a component of nonhomologous end joining (NHEJ)) disrupting background, CRY1 disruptant was constructed to clarify CRY1 function. From analysis of CRY1 disruptant, it was suggested that CRY1 has the activation role of the carotenogenic gene expression. To obtain further insights into the light response, mutants varying carotenoid production were generated. Through analysis of mutants, the existence of the control two-step gene activation was proposed. In addition, our data analysis showed the strong possibility that R. toruloides NBRC 10032 is a homo-diploid strain.


Asunto(s)
Carotenoides/metabolismo , Luz , Rhodotorula/efectos de la radiación , Criptocromos/genética , Criptocromos/metabolismo , Marcación de Gen , Genes Fúngicos , Mutación , Polimorfismo de Nucleótido Simple , Rhodotorula/genética , Rhodotorula/metabolismo
3.
Biosci Biotechnol Biochem ; 84(7): 1501-1512, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32189572

RESUMEN

The oleaginous yeast Rhodosporodium toruloides is receiving widespread attention as an alternative energy source for biofuels due to its unicellular nature, high growth rate and because it can be fermented on a large-scale. In this study, R. toruloides was cultured under both light and dark conditions in order to understand the light response involved in lipid and carotenoid biosynthesis. Our results from phenotype and gene expression analysis showed that R. toruloides responded to light by producing darker pigmentation with an associated increase in carotenoid production. Whilst there was no observable difference in lipid production, slight changes in the fatty acid composition were recorded. Furthermore, a two-step response was found in three genes (GGPSI, CAR1, and CAR2) under light conditions and the expression of the gene encoding the photoreceptor CRY1 was similarly affected.


Asunto(s)
Carotenoides/metabolismo , Ácidos Grasos/biosíntesis , Luz , Rhodotorula/metabolismo , Rhodotorula/efectos de la radiación , Transducción de Señal/efectos de la radiación , Biocombustibles , Fermentación , Expresión Génica/efectos de la radiación , Metabolismo de los Lípidos/efectos de la radiación , Fenotipo , Rhodotorula/genética
4.
Am J Epidemiol ; 188(9): 1637-1645, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31127276

RESUMEN

We examined the association between serum concentrations of ß-alanine, a metabolite of carnosine and anserine, and the risk of dementia in a general population of elderly Japanese persons. In 2007, 1,475 residents of Hisayama, Japan, aged 60-79 years and without dementia were divided into 4 groups according to quartiles of serum ß-alanine concentrations (quartile 1, lowest; quartile 4, highest) and followed for a median of 5.3 years. During follow-up, 117 subjects developed all-cause dementia (Alzheimer in 77 cases and vascular dementia in 31). The risk of all-cause dementia decreased with increasing serum ß-alanine levels after adjustment for potential confounding factors (quartile 2, hazard ratio (HR) = 0.73 (95% confidence interval (CI): 0.45, 1.18); quartile 3, HR = 0.50 (95% CI: 0.28, 0.89); quartile 4, HR = 0.50 (95% CI: 0.27, 0.92); P = 0.01 for trend). A similar inverse association was observed for Alzheimer disease (quartile 2, HR = 0.78 (95% CI: 0.44, 1.38); quartile 3, HR = 0.53 (95% CI: 0.26, 1.06); quartile 4, HR = 0.53 (95% CI: 0.25, 1.10); P = 0.04 for trend) but not for vascular dementia. We found that higher serum ß-alanine levels were significantly associated with lower risks of all-cause dementia and Alzheimer disease. Because serum ß-alanine levels reflect intakes of carnosine/anserine, higher intakes of carnosine/anserine might be beneficial for the prevention of dementia.


Asunto(s)
Demencia/sangre , beta-Alanina/sangre , Anciano , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/epidemiología , Demencia/epidemiología , Demencia Vascular/sangre , Demencia Vascular/epidemiología , Humanos , Incidencia , Japón/epidemiología , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Factores de Riesgo
5.
Plant Physiol ; 170(3): 1435-44, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26754665

RESUMEN

The rate of gas exchange in plants is regulated mainly by stomatal size and density. Generally, higher densities of smaller stomata are advantageous for gas exchange; however, it is unclear what the effect of an extraordinary change in stomatal size might have on a plant's gas-exchange capacity. We investigated the stomatal responses to CO2 concentration changes among 374 Arabidopsis (Arabidopsis thaliana) ecotypes and discovered that Mechtshausen (Me-0), a natural tetraploid ecotype, has significantly larger stomata and can achieve a high stomatal conductance. We surmised that the cause of the increased stomatal conductance is tetraploidization; however, the stomatal conductance of another tetraploid accession, tetraploid Columbia (Col), was not as high as that in Me-0. One difference between these two accessions was the size of their stomatal apertures. Analyses of abscisic acid sensitivity, ion balance, and gene expression profiles suggested that physiological or genetic factors restrict the stomatal opening in tetraploid Col but not in Me-0. Our results show that Me-0 overcomes the handicap of stomatal opening that is typical for tetraploids and achieves higher stomatal conductance compared with the closely related tetraploid Col on account of larger stomatal apertures. This study provides evidence for whether larger stomatal size in tetraploids of higher plants can improve stomatal conductance.


Asunto(s)
Arabidopsis/anatomía & histología , Arabidopsis/genética , Estomas de Plantas/anatomía & histología , Tetraploidía , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Diploidia , Ecotipo , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Estomas de Plantas/metabolismo
6.
Biosci Biotechnol Biochem ; 80(6): 1114-24, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26924100

RESUMEN

Bluefin tuna are high-performance swimmers and top predators in the open ocean. Their swimming is grounded by unique features including an exceptional glycolytic potential in white muscle, which is supported by high enzymatic activities. Here we performed high-throughput RNA sequencing (RNA-Seq) in muscles of the Pacific bluefin tuna (Thunnus orientalis) and Pacific cod (Gadus macrocephalus) and conducted a comparative transcriptomic analysis of genes related to energy production. We found that the total expression of glycolytic genes was much higher in the white muscle of tuna than in the other muscles, and that the expression of only six genes for glycolytic enzymes accounted for 83.4% of the total. These expression patterns were in good agreement with the patterns of enzyme activity previously reported. The findings suggest that the mRNA expression of glycolytic genes may contribute directly to the enzymatic activities in the muscles of tuna.


Asunto(s)
Proteínas de Peces/genética , Genoma , Músculos/metabolismo , ARN Mensajero/genética , Transcriptoma , Atún/genética , Animales , ADN Complementario/genética , ADN Complementario/metabolismo , Proteínas de Peces/metabolismo , Ontología de Genes , Glucólisis/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Especificidad de Órganos , ARN Mensajero/metabolismo , Natación/fisiología , Atún/metabolismo
7.
Proc Natl Acad Sci U S A ; 110(27): 11061-6, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23781100

RESUMEN

Tunas are migratory fishes in offshore habitats and top predators with unique features. Despite their ecological importance and high market values, the open-ocean lifestyle of tuna, in which effective sensing systems such as color vision are required for capture of prey, has been poorly understood. To elucidate the genetic and evolutionary basis of optic adaptation of tuna, we determined the genome sequence of the Pacific bluefin tuna (Thunnus orientalis), using next-generation sequencing technology. A total of 26,433 protein-coding genes were predicted from 16,802 assembled scaffolds. From these, we identified five common fish visual pigment genes: red-sensitive (middle/long-wavelength sensitive; M/LWS), UV-sensitive (short-wavelength sensitive 1; SWS1), blue-sensitive (SWS2), rhodopsin (RH1), and green-sensitive (RH2) opsin genes. Sequence comparison revealed that tuna's RH1 gene has an amino acid substitution that causes a short-wave shift in the absorption spectrum (i.e., blue shift). Pacific bluefin tuna has at least five RH2 paralogs, the most among studied fishes; four of the proteins encoded may be tuned to blue light at the amino acid level. Moreover, phylogenetic analysis suggested that gene conversions have occurred in each of the SWS2 and RH2 loci in a short period. Thus, Pacific bluefin tuna has undergone evolutionary changes in three genes (RH1, RH2, and SWS2), which may have contributed to detecting blue-green contrast and measuring the distance to prey in the blue-pelagic ocean. These findings provide basic information on behavioral traits of predatory fish and, thereby, could help to improve the technology to culture such fish in captivity for resource management.


Asunto(s)
Evolución Molecular , Proteínas de Peces/genética , Pigmentos Retinianos/genética , Atún/genética , Animales , Secuencia de Bases , Visión de Colores/genética , Visión de Colores/fisiología , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Datos de Secuencia Molecular , Opsinas/genética , Filogenia , Conducta Predatoria/fisiología , Atún/fisiología
8.
Breed Sci ; 66(3): 425-33, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27436953

RESUMEN

Rice bran oil is a byproduct of the milling of rice (Oryza sativa L.). It offers various health benefits and has a beneficial fatty acid composition. To increase the amount of rice bran as a sink for triacylglycerol (TAG), we developed and characterized new breeding materials with giant embryos. To induce mutants, we treated fertilized egg cells of the high-yielding cultivar 'Mizuhochikara' with N-methyl-N-nitrosourea (MNU). By screening M2 seeds, we isolated four giant embryo mutant lines. Genetic analysis revealed that the causative loci in lines MGE12 and MGE13 were allelic to giant embryo (ge) on chromosome 7, and had base changes in the causal gene Os07g0603700. On the other hand, the causative loci in lines MGE8 and MGE14 were not allelic to ge, and both were newly mapped on chromosome 3. The TAG contents of all four mutant lines increased relative to their wild type, 'Mizuhochikara'. MGE13 was agronomically similar to 'Mizuhochikara' and would be useful for breeding for improved oil content.

9.
Cancer Immunol Immunother ; 64(12): 1565-73, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26428930

RESUMEN

Personalized peptide vaccination (PPV) is an attractive approach to cancer immunotherapy with strong immune-boosting effects conferring significant clinical benefit. However, as with most therapeutic agents, there is a difference in clinical efficacy among patients receiving PPV. Therefore, a useful biomarker is urgently needed for prognosticating clinical outcomes to preselect patients who would benefit the most from PPV. In this retrospective study, to detect a molecular prognosticator of clinical outcomes for PPV, we analyzed whole-genome gene expression profiles of peripheral blood mononuclear cells (PBMCs) in castration-resistant prostate cancer (CRPC) patients before administration of PPV. Cox regression analysis revealed that mRNA expression of myeloperoxidase, haptoglobin, and neutrophil elastase was significantly associated with overall survival (OS) among vaccinated CRPC patients (adjusted P < 0.01). By promoter sequence analysis of these three genes, we found that rs5472 of haptoglobin (HP), an acute-phase plasma glycoprotein, was strongly correlated to OS of vaccinated CRPC patients (P = 0.0047, hazard ratio 0.47; 95 % confidence interval 0.28-0.80). Furthermore, both HP mRNA expression in PBMCs and protein level in plasma of CRPC patients before administration of PPV exhibited rs5472 dependence (P < 0.001 for mRNA expression and P < 0.05 for protein level). Our findings suggest that rs5472 may play an important role in the immune response to PPV via regulation of HP. Thus, we concluded that rs5472 is a potential prognostic biomarker for PPV.


Asunto(s)
Biomarcadores de Tumor/genética , Vacunas contra el Cáncer/uso terapéutico , Haptoglobinas/genética , Polimorfismo Genético , Neoplasias de la Próstata Resistentes a la Castración/terapia , Vacunas de Subunidad/uso terapéutico , Humanos , Masculino , Regiones Promotoras Genéticas/genética , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico , ARN Mensajero/genética , Estudios Retrospectivos , Resultado del Tratamiento
10.
Appl Environ Microbiol ; 81(4): 1353-63, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25501485

RESUMEN

The koji mold Aspergillus kawachii is used for making the Japanese distilled spirit shochu. During shochu production, A. kawachii is grown in solid-state culture (koji) on steamed grains, such as rice or barley, to convert the grain starch to glucose and produce citric acid. During this process, the cultivation temperature of A. kawachii is gradually increased to 40 °C and is then lowered to 30 °C. This temperature modulation is important for stimulating amylase activity and the accumulation of citric acid. However, the effects of temperature on A. kawachii at the gene expression level have not been elucidated. In this study, we investigated the effect of solid-state cultivation temperature on gene expression for A. kawachii grown on barley. The results of DNA microarray and gene ontology analyses showed that the expression of genes involved in the glycerol, trehalose, and pentose phosphate metabolic pathways, which function downstream of glycolysis, was downregulated by shifting the cultivation temperature from 40 to 30 °C. In addition, significantly reduced expression of genes related to heat shock responses and increased expression of genes related with amino acid transport were also observed. These results suggest that solid-state cultivation at 40 °C is stressful for A. kawachii and that heat adaptation leads to reduced citric acid accumulation through activation of pathways branching from glycolysis. The gene expression profile of A. kawachii elucidated in this study is expected to contribute to the understanding of gene regulation during koji production and optimization of the industrially desirable characteristics of A. kawachii.


Asunto(s)
Bebidas Alcohólicas/microbiología , Aspergillus/metabolismo , Hordeum/microbiología , Transcriptoma , Bebidas Alcohólicas/análisis , Aspergillus/genética , Ácido Cítrico/metabolismo , Fermentación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Glucólisis , Hordeum/metabolismo , Temperatura
11.
BMC Bioinformatics ; 15: 179, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24917541

RESUMEN

BACKGROUND: Understanding the molecular mechanisms involved in disease is critical for the development of more effective and individualized strategies for prevention and treatment. The amount of disease-related literature, including new genetic information on the molecular mechanisms of disease, is rapidly increasing. Extracting beneficial information from literature can be facilitated by computational methods such as the knowledge-discovery approach. Several methods for mining gene-disease relationships using computational methods have been developed, however, there has been a lack of research evaluating specific disease candidate genes. RESULTS: We present a novel method for gathering and prioritizing specific disease candidate genes. Our approach involved the construction of a set of Medical Subject Headings (MeSH) terms for the effective retrieval of publications related to a disease candidate gene. Information regarding the relationships between genes and publications was obtained from the gene2pubmed database. The set of genes was prioritized using a "weighted literature score" based on the number of publications and weighted by the number of genes occurring in a publication. Using our method for the disease states of pain and Alzheimer's disease, a total of 1101 pain candidate genes and 2810 Alzheimer's disease candidate genes were gathered and prioritized. The precision was 0.30 and the recall was 0.89 in the case study of pain. The precision was 0.04 and the recall was 0.6 in the case study of Alzheimer's disease. The precision-recall curve indicated that the performance of our method was superior to that of other publicly available tools. CONCLUSIONS: Our method, which involved the use of a set of MeSH terms related to disease candidate genes and a novel weighted literature score, improved the accuracy of gathering and prioritizing candidate genes by focusing on a specific disease.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Factuales , Regulación de la Expresión Génica , Medical Subject Headings , Enfermedad de Alzheimer/genética , Animales , Humanos , Dolor/genética
12.
Plant Cell Physiol ; 55(6): 1169-83, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24747952

RESUMEN

Although an alternative pathway has been suggested, the prevailing view is that starch synthesis in cereal endosperm is controlled by the activity of the cytosolic isoform of ADPglucose pyrophosphorylase (AGPase). In rice, the cytosolic AGPase isoform is encoded by the OsAGPS2b and OsAGPL2 genes, which code for the small (S2b) and large (L2) subunits of the heterotetrameric enzyme, respectively. In this study, we isolated several allelic missense and nonsense OsAGPL2 mutants by N-methyl-N-nitrosourea (MNU) treatment of fertilized egg cells and by TILLING (Targeting Induced Local Lesions in Genomes). Interestingly, seeds from three of the missense mutants (two containing T139I and A171V) were severely shriveled and had seed weight and starch content comparable with the shriveled seeds from OsAGPL2 null mutants. Results from kinetic analysis of the purified recombinant enzymes revealed that the catalytic and allosteric regulatory properties of these mutant enzymes were significantly impaired. The missense heterotetramer enzymes and the S2b homotetramer had lower specific (catalytic) activities and affinities for the activator 3-phosphoglycerate (3-PGA). The missense heterotetramer enzymes showed more sensitivity to inhibition by the inhibitor inorganic phosphate (Pi) than the wild-type AGPase, while the S2b homotetramer was profoundly tolerant to Pi inhibition. Thus, our results provide definitive evidence that starch biosynthesis during rice endosperm development is controlled predominantly by the catalytic activity of the cytoplasmic AGPase and its allosteric regulation by the effectors. Moreover, our results show that the L2 subunit is essential for both catalysis and allosteric regulatory properties of the heterotetramer enzyme.


Asunto(s)
Glucosa-1-Fosfato Adenililtransferasa/genética , Oryza/enzimología , Almidón/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Catálisis , Codón sin Sentido , Endospermo/enzimología , Endospermo/genética , Glucosa-1-Fosfato Adenililtransferasa/aislamiento & purificación , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Isoenzimas , Cinética , Modelos Estructurales , Datos de Secuencia Molecular , Mutación Missense , Oryza/genética , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Polimerizacion , Proteínas Recombinantes , Semillas/enzimología , Semillas/genética , Alineación de Secuencia
13.
FEMS Yeast Res ; 14(5): 789-96, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24889034

RESUMEN

Research on the relationship between mitochondrial membrane potential and fermentation profile is being intensely pursued because of the potential for developing advanced fermentation technologies. In the present study, we isolated naturally occurring strains of yeast from sake mash that produce high levels of malic acid and demonstrate that variations in mitochondrial membrane potential correlate with malic acid production. To define the underlying biochemical mechanism, we determined the activities of enzymes required for malic acid synthesis and found that pyruvate carboxylase and malate dehydrogenase activities in strains that produce high levels of malic acid were elevated compared with the standard sake strain K901. These results inspired us to hypothesize that decreased mitochondrial membrane potential was responsible for increased malic acid synthesis, and we present data supporting this hypothesis. Thus, the mitochondrial membrane potential of high malic acid producers was lower compared with standard strains. We conclude that mitochondrial membrane potential correlates with malic acid production.


Asunto(s)
Malatos/metabolismo , Potencial de la Membrana Mitocondrial , Saccharomyces cerevisiae/fisiología , Fermentación , Malato Deshidrogenasa/metabolismo , Piruvato Carboxilasa/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Nucleic Acids Res ; 40(6): 2377-98, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22121215

RESUMEN

Gene regulatory networks inferred from RNA abundance data have generated significant interest, but despite this, gene network approaches are used infrequently and often require input from bioinformaticians. We have assembled a suite of tools for analysing regulatory networks, and we illustrate their use with microarray datasets generated in human endothelial cells. We infer a range of regulatory networks, and based on this analysis discuss the strengths and limitations of network inference from RNA abundance data. We welcome contact from researchers interested in using our inference and visualization tools to answer biological questions.


Asunto(s)
Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Programas Informáticos , Células Cultivadas , Gráficos por Computador , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , FN-kappa B/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Interferente Pequeño , Factor de Necrosis Tumoral alfa/farmacología
15.
J Bacteriol ; 195(12): 2931-6, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23585540

RESUMEN

Clostridium perfringens causes gas gangrene and gastrointestinal (GI) diseases in humans. The most common cause of C. perfringens-associated food poisoning is the consumption of C. perfringens vegetative cells followed by sporulation and production of enterotoxin in the gut. Despite the importance of spore formation in C. perfringens pathogenesis, the details of the regulation of sporulation have not yet been defined fully. In this study, microarray and bioinformatic analyses identified a candidate gene (the RNA regulator virX) for the repression of genes encoding positive regulators (Spo0A and sigma factors) of C. perfringens sporulation. A virX mutant constructed in the food poisoning strain SM101 had a much higher sporulation efficiency than that of the wild type. The transcription of sigE, sigF, and sigK was strongly induced at 2.5 h of culture of the virX mutant. Moreover, the transcription of the enterotoxin gene was also strongly induced in the virX mutant. Western blotting confirmed that the levels of enterotoxin production were higher in the virX mutant than in the wild type. These observations indicated that the higher levels of sporulation and enterotoxin production in the virX mutant were specifically due to inactivation of the virX gene. Since virX homologues were not found in any Bacillus species but were present in other clostridial species, our findings identify further differences in the regulation of sporulation between Bacillus and certain Clostridium species. The virX RNA regulator plays a key role in the drastic shift in lifestyle of the anaerobic flesh eater C. perfringens between the vegetative state (for gas gangrene) and the sporulating state (for food poisoning).


Asunto(s)
Clostridium perfringens/crecimiento & desarrollo , Clostridium perfringens/metabolismo , Enterotoxinas/biosíntesis , Regulación Bacteriana de la Expresión Génica , Proteínas Represoras/metabolismo , Esporas Bacterianas/crecimiento & desarrollo , Western Blotting , Clostridium perfringens/genética , Biología Computacional , Eliminación de Gen , Perfilación de la Expresión Génica , Análisis por Micromatrices , Proteínas Represoras/genética
16.
BMC Genomics ; 14: 23, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23324451

RESUMEN

BACKGROUND: Apoptosis is a critical process in endothelial cell (EC) biology and pathology, which has been extensively studied at protein level. Numerous gene expression studies of EC apoptosis have also been performed, however few attempts have been made to use gene expression data to identify the molecular relationships and master regulators that underlie EC apoptosis. Therefore, we sought to understand these relationships by generating a Bayesian gene regulatory network (GRN) model. RESULTS: ECs were induced to undergo apoptosis using serum withdrawal and followed over a time course in triplicate, using microarrays. When generating the GRN, this EC time course data was supplemented by a library of microarray data from EC treated with siRNAs targeting over 350 signalling molecules.The GRN model proposed Vasohibin-1 (VASH1) as one of the candidate master-regulators of EC apoptosis with numerous downstream mRNAs. To evaluate the role played by VASH1 in EC, we used siRNA to reduce the expression of VASH1. Of 10 mRNAs downstream of VASH1 in the GRN that were examined, 7 were significantly up- or down-regulated in the direction predicted by the GRN.Further supporting an important biological role of VASH1 in EC, targeted reduction of VASH1 mRNA abundance conferred resistance to serum withdrawal-induced EC death. CONCLUSION: We have utilised Bayesian GRN modelling to identify a novel candidate master regulator of EC apoptosis. This study demonstrates how GRN technology can complement traditional methods to hypothesise the regulatory relationships that underlie important biological processes.


Asunto(s)
Apoptosis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Endoteliales/citología , Redes Reguladoras de Genes/genética , Teorema de Bayes , Proteínas de Ciclo Celular/deficiencia , Biología Computacional , Células Endoteliales/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Modelos Genéticos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética
17.
Biosci Biotechnol Biochem ; 77(4): 766-70, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23563546

RESUMEN

Haptoglobin (Hp) is a well-known acute-phase protein that possibly has influence on tumors through the immune response. This study was conducted to evaluate the correlation between Hp expression and the effect of treatment by cancer peptide vaccines in advanced castration-resistant prostate cancer (CRPC) patients. Hp expression was measured by RT-PCR using peripheral blood mononuclear cells (PBMCs) collected from advanced CRPC patients, who were divided into two groups: long-term survivors and short-term survivors. Before cancer peptide vaccination (pre-vaccination), Hp expression was almost same in the two groups, but after cancer peptide vaccination (post-vaccination), Hp expression was higher in short-term survivors, suggesting that Hp expression in the PBMCs increased in short-term survivors after treatment by cancer peptide vaccines. Our results suggest that Hp expression level in the PBMCs can serve as a prognostic biomarker in treatment by cancer peptide vaccine in advanced CRPC patients.


Asunto(s)
Haptoglobinas/metabolismo , Leucocitos Mononucleares/metabolismo , Orquiectomía , Péptidos/inmunología , Medicina de Precisión , Neoplasias de la Próstata/diagnóstico , Vacunación , Biomarcadores/sangre , Vacunas contra el Cáncer/inmunología , Regulación Neoplásica de la Expresión Génica/inmunología , Haptoglobinas/genética , Humanos , Masculino , Pronóstico , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/prevención & control , Neoplasias de la Próstata/cirugía , ARN Mensajero/genética , ARN Mensajero/metabolismo , Insuficiencia del Tratamiento
18.
Biosci Biotechnol Biochem ; 77(3): 534-43, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23470758

RESUMEN

The ascomycete Trichoderma reesei is known as one of the most prolific producers of plant biomass-degrading enzymes. While several mutant strains have been developed by mutagenesis to improve enzyme productivity for a variety of industrial applications, little is known about the mechanical basis of these improvements. A genomic sequence comparison of mutant and wild-type strains was undertaken to provide new insights in this regard. We identified a number of single-nucleotide polymorphisms (SNPs) after sequencing the genome of a hyper-cellulolytic T. reesei strain, PC-3-7, with a next-generation sequencer. Of these, the SNP detected in cre1, the carbon catabolite repressor gene, was found to be responsible for increased cellulase production. Further comparative genomic analysis enabled the identification of an SNP that correlated well with high cellulase production in a T. reesei mutant. These results provide a better understanding of the genetic changes induced by classical mutagenesis and how they correlate with desirable phenotypes in filamentous fungi.


Asunto(s)
Celulosa/metabolismo , Mutación , Polimorfismo de Nucleótido Simple , Trichoderma/genética , Secuencia de Aminoácidos , Celulasa/biosíntesis , ADN de Hongos/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos/genética , Glucosa/metabolismo , Japón , Datos de Secuencia Molecular , Mutagénesis , Estructura Terciaria de Proteína , Trichoderma/enzimología , Trichoderma/metabolismo
19.
Proc Natl Acad Sci U S A ; 107(8): 3704-9, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20133578

RESUMEN

The DNA methylation status of human X chromosomes from male and female neutrophils was identified by high-throughput sequencing of HpaII and MspI digested fragments. In the intergenic and intragenic regions on the X chromosome, the sites outside CpG islands were heavily hypermethylated to the same degree in both genders. Nearly half of X chromosome promoters were either hypomethylated or hypermethylated in both females and males. Nearly one third of X chromosome promoters were a mixture of hypomethylated and heterogeneously methylated sites in females and were hypomethylated in males. Thus, a large fraction of genes that are silenced on the inactive X chromosome are hypomethylated in their promoter regions. These genes frequently belong to the evolutionarily younger strata of the X chromosome. The promoters that were hypomethylated at more than two sites contained most of the genes that escaped silencing on the inactive X chromosome. The overall levels of expression of X-linked genes were indistinguishable in females and males, regardless of the methylation state of the inactive X chromosome. Thus, in addition to DNA methylation, other factors are involved in the fine tuning of gene dosage compensation in neutrophils.


Asunto(s)
Cromosomas Humanos X/genética , Metilación de ADN , Regulación de la Expresión Génica , Expresión Génica , Genes Ligados a X , Femenino , Humanos , Masculino , Neutrófilos/metabolismo , Regiones Promotoras Genéticas , Factores Sexuales
20.
Sci Rep ; 13(1): 3190, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823281

RESUMEN

Genome editing is a technology that can remarkably accelerate crop and animal breeding via artificial induction of desired traits with high accuracy. This study aimed to develop a chub mackerel variety with reduced aggression using an experimental system that enables efficient egg collection and genome editing. Sexual maturation and control of spawning season and time were technologically facilitated by controlling the photoperiod and water temperature of the rearing tank. In addition, appropriate low-temperature treatment conditions for delaying cleavage, shape of the glass capillary, and injection site were examined in detail in order to develop an efficient and robust microinjection system for the study. An arginine vasotocin receptor V1a2 (V1a2) knockout (KO) strain of chub mackerel was developed in order to reduce the frequency of cannibalistic behavior at the fry stage. Video data analysis using bioimage informatics quantified the frequency of aggressive behavior, indicating a significant 46% reduction (P = 0.0229) in the frequency of cannibalistic behavior than in wild type. Furthermore, in the V1a2 KO strain, the frequency of collisions with the wall and oxygen consumption also decreased. Overall, the manageable and calm phenotype reported here can potentially contribute to the development of a stable and sustainable marine product.


Asunto(s)
Cyprinidae , Perciformes , Animales , Vasotocina/genética , Edición Génica , Perciformes/genética , Agresión , Cyprinidae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA