Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Virol J ; 21(1): 15, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200555

RESUMEN

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is driven by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which has led to an enormous burden on patient morbidity and mortality. The renin-angiotensin-aldosterone system (RAAS) plays a significant role in various pulmonary diseases. Since SARS-CoV-2 utilizes the angiotensin-converting enzyme (ACE)2 receptor to exert its virulence and pathogenicity, the RAAS is of particular importance in COVID 19. METHODS: Our preliminary study investigates retrospectively the influence of selected ACE-polymorphisms (I/D location at intron 16 in the B-coding sequence (rs4646994) and A-240T (rs 4291) at the A-promoter) as well as ACE1 and ACE2 serum levels on disease severity and the inflammatory response in inpatients and outpatients with COVID-19. RESULTS: Our study included 96 outpatients and 88 inpatients (65.9% male, mean age 60 years) with COVID-19 from April to December 2020 in four locations in Germany. Of the hospitalized patients, 88.6% participants were moderately ill (n = 78, 64% male, median age 60 years), and 11.4% participants were severely ill or deceased (n = 10, 90% male, median age 71 years). We found no polymorphism-related difference in disease, in age distribution, time to hospitalization and time of hospitalization for the inpatient group. ACE1 serum levels were significantly increased in the DD compared to the II polymorphism and in the TT compared to the AA polymorphism. There was no significant difference in ACE 1 serum levels l between moderately ill and severely ill patients. However, participants requiring oxygen supplementation had significantly elevated ACE1 levels compared to participants not requiring oxygen, with no difference in ACE2 levels whereas females had significantly higher ACE2 levels. CONCLUSIONS: Although there were no differences in the distribution of ACE polymorphisms in disease severity, we found increased proinflammatory regulation of the RAAS in patients with oxygen demand and increased serum ACE2 levels in women, indicating a possible enhanced anti-inflammatory immune response. CLINICAL TRIAL REGISTRATION: PreBiSeCov: German Clinical Trials Register, DRKS-ID: DRKS00021591, Registered on 27th April 2020.


Asunto(s)
COVID-19 , Sistema Renina-Angiotensina , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enzima Convertidora de Angiotensina 2/genética , Mutagénesis Insercional , Oxígeno , Peptidil-Dipeptidasa A/genética , Sistema Renina-Angiotensina/genética , Estudios Retrospectivos , SARS-CoV-2/genética
2.
Inflamm Res ; 72(8): 1649-1664, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37498393

RESUMEN

BACKGROUND, OBJECTIVES AND DESIGN: Arachidonic acid 15-lipoxygenase (ALOX15) has been implicated in the pathogenesis of inflammatory diseases but since pro- and anti-inflammatory roles have been suggested, the precise function of this enzyme is still a matter of discussion. To contribute to this discussion, we created transgenic mice, which express human ALOX15 under the control of the activating protein 2 promoter (aP2-ALOX15 mice) and compared the sensitivity of these gain-of-function animals in two independent mouse inflammation models with Alox15-deficient mice (loss-of-function animals) and wildtype control animals. MATERIALS AND METHODS: Transgenic aP2-ALOX15 mice were tested in comparison with Alox15 knockout mice (Alox15-/-) and corresponding wildtype control animals (C57BL/6J) in the complete Freund's adjuvant induced hind-paw edema model and in the dextran sulfate sodium induced colitis (DSS-colitis) model. In the paw edema model, the degree of paw swelling and the sensitivity of the inflamed hind-paw for mechanic (von Frey test) and thermal (Hargreaves test) stimulation were quantified as clinical readout parameters. In the dextran sodium sulfate induced colitis model the loss of body weight, the colon lengths and the disease activity index were determined. RESULTS: In the hind-paw edema model, systemic inactivation of the endogenous Alox15 gene intensified the inflammatory symptoms, whereas overexpression of human ALOX15 reduced the degree of hind-paw inflammation. These data suggest anti-inflammatory roles for endogenous and transgenic ALOX15 in this particular inflammation model. As mechanistic reason for the protective effect downregulation of the pro-inflammatory ALOX5 pathways was suggested. However, in the dextran sodium sulfate colitis model, in which systemic inactivation of the Alox15 gene protected female mice from DSS-induced colitis, transgenic overexpression of human ALOX15 did hardly impact the intensity of the inflammatory symptoms. CONCLUSION: The biological role of ALOX15 in the pathogenesis of inflammation is variable and depends on the kind of the animal inflammation model.


Asunto(s)
Araquidonato 15-Lipooxigenasa , Colitis , Humanos , Ratones , Femenino , Animales , Ratones Transgénicos , Adyuvante de Freund , Araquidonato 15-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/uso terapéutico , Dextranos/efectos adversos , Dextranos/metabolismo , Ratones Endogámicos C57BL , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/tratamiento farmacológico , Colitis/metabolismo , Colon/metabolismo , Antiinflamatorios/farmacología , Ratones Noqueados , Edema/inducido químicamente , Edema/genética , Edema/metabolismo , Sulfato de Dextran/efectos adversos , Sulfato de Dextran/metabolismo , Modelos Animales de Enfermedad
3.
Cell Mol Biol Lett ; 28(1): 97, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030974

RESUMEN

Arachidonic acid 15-lipoxygenases (ALOX15) play a role in mammalian erythropoiesis but they have also been implicated in inflammatory processes. Seven intact Alox genes have been detected in the mouse reference genome and the mouse Alox15 gene is structurally similar to the orthologous genes of other mammals. However, mouse and human ALOX15 orthologs have different functional characteristics. Human ALOX15 converts C20 polyenoic fatty acids like arachidonic acid mainly to the n-6 hydroperoxide. In contrast, the n-9 hydroperoxide is the major oxygenation product formed by mouse Alox15. Previous experiments indicated that Leu353Phe exchange in recombinant mouse Alox15 humanized the catalytic properties of the enzyme. To investigate whether this functional humanization might also work in vivo and to characterize the functional consequences of mouse Alox15 humanization we generated Alox15 knock-in mice (Alox15-KI), in which the Alox15 gene was modified in such a way that the animals express the arachidonic acid 15-lipoxygenating Leu353Phe mutant instead of the arachidonic acid 12-lipoxygenating wildtype enzyme. These mice develop normally, they are fully fertile but display modified plasma oxylipidomes. In young individuals, the basic hematological parameters were not different when Alox15-KI mice and outbred wildtype controls were compared. However, when growing older male Alox15-KI mice develop signs of dysfunctional erythropoiesis such as reduced hematocrit, lower erythrocyte counts and attenuated hemoglobin concentration. These differences were paralleled by an improved ex vivo osmotic resistance of the peripheral red blood cells. Interestingly, such differences were not observed in female individuals suggesting gender specific effects. In summary, these data indicated that functional humanization of mouse Alox15 induces defective erythropoiesis in aged male individuals.


Asunto(s)
Araquidonato 15-Lipooxigenasa , Peróxido de Hidrógeno , Animales , Femenino , Humanos , Masculino , Ratones , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/genética , Ácido Araquidónico , Mamíferos
4.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37762455

RESUMEN

The human genome involves six functional arachidonic acid lipoxygenase (ALOX) genes and the corresponding enzymes (ALOX15, ALOX15B, ALOX12, ALOX12B, ALOXE3, ALOX5) have been implicated in cell differentiation and in the pathogenesis of inflammatory, hyperproliferative, metabolic, and neurological disorders. In other vertebrates, ALOX-isoforms have also been identified, but they occur less frequently. Since bony fish represent the most abundant subclass of vertebrates, we recently expressed and characterized putative ALOX15 orthologs of three different bony fish species (Nothobranchius furzeri, Pundamilia nyererei, Scleropages formosus). To explore whether these enzymes represent functional equivalents of mammalian ALOX15 orthologs, we here compared a number of structural and functional characteristics of these ALOX-isoforms with those of mammalian enzymes. We found that in contrast to mammalian ALOX15 orthologs, which exhibit a broad substrate specificity, a membrane oxygenase activity, and a special type of dual reaction specificity, the putative bony fish ALOX15 orthologs strongly prefer C20 fatty acids, lack any membrane oxygenase activity and exhibit a different type of dual reaction specificity with arachidonic acid. Moreover, mutagenesis studies indicated that the Triad Concept, which explains the reaction specificity of all mammalian ALOX15 orthologs, is not applicable for the putative bony fish enzymes. The observed functional differences between putative bony fish ALOX15 orthologs and corresponding mammalian enzymes suggest a targeted optimization of the catalytic properties of ALOX15 orthologs during vertebrate development.

5.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37373195

RESUMEN

The arachidonic acid lipoxygenase 15B (ALOX15B) orthologs of men and mice form different reaction products when arachidonic acid is used as the substrate. Tyr603Asp+His604Val double mutation in mouse arachidonic acid lipoxygenase 15b humanized the product pattern and an inverse mutagenesis strategy murinized the specificity of the human enzyme. As the mechanistic basis for these functional differences, an inverse substrate binding at the active site of the enzymes has been suggested, but experimental proof for this hypothesis is still pending. Here we expressed wildtype mouse and human arachidonic acid lipoxygenase 15B orthologs as well as their humanized and murinized double mutants as recombinant proteins and analyzed the product patterns of these enzymes with different polyenoic fatty acids. In addition, in silico substrate docking studies and molecular dynamics simulation were performed to explore the mechanistic basis for the distinct reaction specificities of the different enzyme variants. Wildtype human arachidonic acid lipoxygenase 15B converted arachidonic acid and eicosapentaenoic acid to their 15-hydroperoxy derivatives but the Asp602Tyr+Val603His exchange murinized the product pattern. The inverse mutagenesis strategy in mouse arachidonic acid lipoxygenase 15b (Tyr603Asp+His604Val exchange) humanized the product pattern with these substrates, but the situation was different with docosahexaenoic acid. Here, Tyr603Asp+His604Val substitution in mouse arachidonic acid lipoxygenase 15b also humanized the specificity but the inverse mutagenesis (Asp602Tyr+Val603His) did not murinize the human enzyme. With linoleic acid Tyr603Asp+His604Val substitution in mouse arachidonic acid lipoxygenase 15b humanized the product pattern but the inverse mutagenesis in human arachidonic acid lipoxygenase 15B induced racemic product formation. Amino acid exchanges at critical positions of human and mouse arachidonic acid lipoxygenase 15B orthologs humanized/murinized the product pattern with C20 fatty acids, but this was not the case with fatty acid substrates of different chain lengths. Asp602Tyr+Val603His exchange murinized the product pattern of human arachidonic acid lipoxygenase 15B with arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid. An inverse mutagenesis strategy on mouse arachidonic acid lipoxygenase 15b (Tyr603Asp+His604Val exchange) did humanize the reaction products with arachidonic acid and eicosapentaenoic acid, but not with docosahexaenoic acid.


Asunto(s)
Araquidonato Lipooxigenasas , Ácido Eicosapentaenoico , Humanos , Animales , Ratones , Araquidonato Lipooxigenasas/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácidos Docosahexaenoicos , Ácido Araquidónico/metabolismo , Ácidos Grasos , Especificidad por Sustrato , Araquidonato 15-Lipooxigenasa/metabolismo
6.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902243

RESUMEN

Arachidonic acid lipoxygenases (ALOX) have been implicated in the pathogenesis of inflammatory, hyperproliferative, neurodegenerative, and metabolic diseases, but the physiological function of ALOX15 still remains a matter of discussion. To contribute to this discussion, we created transgenic mice (aP2-ALOX15 mice) expressing human ALOX15 under the control of the aP2 (adipocyte fatty acid binding protein 2) promoter, which directs expression of the transgene to mesenchymal cells. Fluorescence in situ hybridization and whole-genome sequencing indicated transgene insertion into the E1-2 region of chromosome 2. The transgene was highly expressed in adipocytes, bone marrow cells, and peritoneal macrophages, and ex vivo activity assays proved the catalytic activity of the transgenic enzyme. LC-MS/MS-based plasma oxylipidome analyses of the aP2-ALOX15 mice suggested in vivo activity of the transgenic enzyme. The aP2-ALOX15 mice were viable, could reproduce normally, and did not show major phenotypic alterations when compared with wildtype control animals. However, they exhibited gender-specific differences with wildtype controls when their body-weight kinetics were evaluated during adolescence and early adulthood. The aP2-ALOX15 mice characterized here can now be used for gain-of-function studies evaluating the biological role of ALOX15 in adipose tissue and hematopoietic cells.


Asunto(s)
Araquidonato 15-Lipooxigenasa , Expresión Génica , Espectrometría de Masas en Tándem , Adulto , Animales , Humanos , Ratones , Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/metabolismo , Cromatografía Liquida , Hibridación Fluorescente in Situ , Ratones Transgénicos
7.
Int J Mol Sci ; 24(13)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37446212

RESUMEN

Mammalian arachidonic acid lipoxygenases (ALOXs) have been implicated in the pathogenesis of inflammatory diseases, and its pro- and anti-inflammatory effects have been reported for different ALOX-isoforms. Human ALOX15B oxygenates arachidonic acid to its 15-hydroperoxy derivative, whereas the corresponding 8-hydroperoxide is formed by mouse Alox15b (Alox8). This functional difference impacts the biosynthetic capacity of the two enzymes for creating pro- and anti-inflammatory eicosanoids. To explore the functional consequences of the humanization of the reaction specificity of mouse Alox15b in vivo, we tested Alox15b knock-in mice that express the arachidonic acid 15-lipoxygenating Tyr603Asp and His604Val double mutant of Alox15b, instead of the arachidonic acid 8-lipoxygenating wildtype enzyme, in two different animal inflammation models. In the dextran sodium sulfate-induced colitis model, female Alox15b-KI mice lost significantly more bodyweight during the acute phase of inflammation and recovered less rapidly during the resolution phase. Although we observed significant differences in the colonic levels of selected pro- and anti-inflammatory eicosanoids during the time-course of inflammation, there were no differences between the two genotypes at any time-point of the disease. In Freund's complete adjuvant-induced paw edema model, Alox15b-KI mice were less susceptible than outbred wildtype controls, though we did not observe significant differences in pain perception (Hargreaves-test, von Frey-test) when the two genotypes were compared. our data indicate that humanization of the reaction specificity of mouse Alox15b (Alox8) sensitizes mice for dextran sodium sulfate-induced experimental colitis, but partly protects the animals in the complete Freund's adjuvant-induced paw edema model.


Asunto(s)
Colitis , Dextranos , Humanos , Ratones , Femenino , Animales , Ácido Araquidónico , Inflamación/genética , Mamíferos , Antiinflamatorios , Edema/inducido químicamente , Edema/genética , Modelos Animales de Enfermedad
8.
Molecules ; 28(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37513289

RESUMEN

Mammalian 15-lipoxygenases (ALOX15) are lipid peroxidizing enzymes that exhibit variable functionality in different cancer and inflammation models. The pathophysiological role of linoleic acid- and arachidonic acid-derived ALOX15 metabolites rendered this enzyme a target for pharmacological research. Several indole and imidazole derivatives inhibit the catalytic activity of rabbit ALOX15 in a substrate-specific manner, but the molecular basis for this allosteric inhibition remains unclear. Here, we attempt to define a common pharmacophore, which is critical for this allosteric inhibition. We found that substituted imidazoles induce weaker inhibitory effects when compared with the indole derivatives. In silico docking studies and molecular dynamics simulations using a dimeric allosteric enzyme model, in which the inhibitor occupies the substrate-binding pocket of one monomer, whereas the substrate fatty acid is bound at the catalytic center of another monomer within the ALOX15 dimer, indicated that chemical modification of the core pharmacophore alters the enzyme-inhibitor interactions, inducing a reduced inhibitory potency. In our dimeric ALOX15 model, the structural differences induced by inhibitor binding are translated to the hydrophobic dimerization cluster and affect the structures of enzyme-substrate complexes. These data are of particular importance since substrate-specific inhibition may contribute to elucidation of the putative roles of ALOX15 metabolites derived from different polyunsaturated fatty acids in mammalian pathophysiology.


Asunto(s)
Ácido Linoleico , Farmacóforo , Animales , Conejos , Ácido Linoleico/metabolismo , Mamíferos/metabolismo , Ácidos Linoleicos/metabolismo , Araquidonato 15-Lipooxigenasa/química , Imidazoles/farmacología , Imidazoles/metabolismo
9.
FASEB J ; 35(4): e21491, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33710695

RESUMEN

An increased omega-3 polyunsaturated fatty acid (n-3 PUFA) tissue status can lead to a significant formation of anti-inflammatory lipid mediators and effective reduction in inflammation and tissue injury in murine colitis. Arachidonic acid lipoxygenases (ALOX) have been implicated in the pathogenesis of inflammatory bowel disease as well as in the formation of pro- and anti-inflammatory lipid mediators. To explore the role of Alox15 in the protective response found in fat1 transgenic mice with endogenously increased n-3 PUFA tissue status fat1 transgenic mice were crossed with Alox15-deficient animals and challenged in the dextran sulfate sodium (DSS)- and the 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis model. Transgenic fat1 mice rich in endogenous n-3 PUFAs were protected from colitis. However, additional systemic inactivation of the Alox15 gene counteracted this protective effect. To explore the molecular basis for this effect Alox15 lipid metabolites derived from n-3 PUFA were analyzed in the different mice. Alox15 deficiency suppressed the formation of n-3 PUFA-derived 15-hydroxy eicosapentaenoic acid (15-HEPE). In contrast, treating mice with intraperitoneal injections of 15S-HEPE protected wild-type mice from DSS- and TNBS-induced colitis. These data suggest that the anti-colitis effect of increased n-3 PUFA in the transgenic fat1 mouse model is mediated in part via Alox15-derived 15-HEPE formation.


Asunto(s)
Araquidonato 12-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/genética , Eicosanoides/metabolismo , Ácidos Grasos Omega-3/farmacología , Inflamación/tratamiento farmacológico , Animales , Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/efectos de los fármacos , Araquidonato 15-Lipooxigenasa/metabolismo , Modelos Animales de Enfermedad , Ácidos Grasos Omega-3/metabolismo , Inflamación/metabolismo , Ratones Transgénicos , Ácido Trinitrobencenosulfónico/farmacología
10.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36555666

RESUMEN

Eicosanoids and related compounds are pleiotropic lipid mediators, which are biosynthesized in mammals via three distinct metabolic pathways (cyclooxygenase pathway, lipoxygenase pathway, epoxygenase pathway). These mediators have been implicated in the pathogenesis of inflammatory diseases and drugs interfering with eicosanoid signaling are currently available as antiphlogistics. Eicosanoid biosynthesis has well been explored in mammals including men, but much less detailed information is currently available on eicosanoid biosynthesis in other vertebrates including bony fish. There are a few reports in the literature describing the expression of arachidonic acid lipoxygenases (ALOX isoforms) in several bony fish species but except for two zebrafish ALOX-isoforms (zfALOX1 and zfALOX2) bony fish eicosanoid biosynthesizing enzymes have not been characterized. To fill this gap and to explore the possible roles of ALOX15 orthologs in bony fish inflammation we cloned and expressed putative ALOX15 orthologs from three different bony fish species (N. furzeri, P. nyererei, S. formosus) as recombinant N-terminal his-tag fusion proteins and characterized the corresponding enzymes with respect to their catalytic properties (temperature-dependence, activation energy, pH-dependence, substrate affinity and substrate specificity with different polyenoic fatty acids). Furthermore, we identified the chemical structure of the dominant oxygenation products formed by the recombinant enzymes from different free fatty acids and from more complex lipid substrates. Taken together, our data indicate that functional ALOX isoforms occur in bony fish but that their catalytic properties are different from those of mammalian enzymes. The possible roles of these ALOX-isoforms in bony fish inflammation are discussed.


Asunto(s)
Lipooxigenasa , Pez Cebra , Animales , Lipooxigenasa/genética , Lipooxigenasa/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Mamíferos/metabolismo , Eicosanoides/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inflamación/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo
11.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36077303

RESUMEN

Glutathione peroxidase 4 (Gpx4) and arachidonic acid 15 lipoxygenase (Alox15) are counterplayers in oxidative lipid metabolism and both enzymes have been implicated in spermatogenesis. However, the roles of the two proteins in acrosomal exocytosis have not been explored in detail. Here we characterized Gpx4 distribution in mouse sperm and detected the enzyme not only in the midpiece of the resting sperm but also at the anterior region of the head, where the acrosome is localized. During sperm capacitation, Gpx4 translocated to the post-acrosomal compartment. Sperm from Gpx4+/Sec46Ala mice heterozygously expressing a catalytically silent enzyme displayed an increased expression of phosphotyrosyl proteins, impaired acrosomal exocytosis after in vitro capacitation and were not suitable for in vitro fertilization. Alox15-deficient sperm showed normal acrosome reactions but when crossed into a Gpx4-deficient background spontaneous acrosomal exocytosis was observed during capacitation and these cells were even less suitable for in vitro fertilization. Taken together, our data indicate that heterozygous expression of a catalytically silent Gpx4 variant impairs acrosomal exocytosis and in vitro fertilization. Alox15 deficiency hardly impacted the acrosome reaction but when crossed into the Gpx4-deficient background spontaneous acrosomal exocytosis was induced. The detailed molecular mechanisms for the observed effects may be related to the compromised redox homeostasis.


Asunto(s)
Reacción Acrosómica , Araquidonato 15-Lipooxigenasa , Acrosoma/metabolismo , Animales , Araquidonato 15-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/metabolismo , Exocitosis , Fertilización In Vitro , Masculino , Ratones , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Semen , Espermatozoides/metabolismo
12.
BMC Cancer ; 21(1): 481, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33931028

RESUMEN

BACKGROUND: One key approach for anticancer therapy is drug combination. Drug combinations can help reduce doses and thereby decrease side effects. Furthermore, the likelihood of drug resistance is reduced. Distinct alterations in tumor metabolism have been described in past decades, but metabolism has yet to be targeted in clinical cancer therapy. Recently, we found evidence for synergism between dichloroacetate (DCA), a pyruvate dehydrogenase kinase inhibitor, and the HIF-1α inhibitor PX-478. In this study, we aimed to analyse this synergism in cell lines of different cancer types and to identify the underlying biochemical mechanisms. METHODS: The dose-dependent antiproliferative effects of the single drugs and their combination were assessed using SRB assays. FACS, Western blot and HPLC analyses were performed to investigate changes in reactive oxygen species levels, apoptosis and the cell cycle. Additionally, real-time metabolic analyses (Seahorse) were performed with DCA-treated MCF-7 cells. RESULTS: The combination of DCA and PX-478 produced synergistic effects in all eight cancer cell lines tested, including colorectal, lung, breast, cervical, liver and brain cancer. Reactive oxygen species generation and apoptosis played important roles in this synergism. Furthermore, cell proliferation was inhibited by the combination treatment. CONCLUSIONS: Here, we found that these tumor metabolism-targeting compounds exhibited a potent synergism across all tested cancer cell lines. Thus, we highly recommend the combination of these two compounds for progression to in vivo translational and clinical trials.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral/efectos de los fármacos , Ácido Dicloroacético/farmacología , Compuestos de Mostaza/farmacología , Fenilpropionatos/farmacología , Células A549 , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales/métodos , Sinergismo Farmacológico , Células HT29 , Células HeLa , Humanos , Células MCF-7 , Especies Reactivas de Oxígeno/metabolismo
13.
FASEB J ; 34(11): 14318-14335, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32918502

RESUMEN

Arachidonic acid 15-lipoxygenases (ALOX15) are lipid peroxidizing enzymes, which has previously been implicated in the maturational breakdown of intracellular organelles and plasma membrane remodeling during reticulocyte-erythrocyte transition. Conventional Alox15-/- mice are viable, develop normally but do not exhibit a major defective erythropoietic phenotype. To characterize the putative in vivo relevance of Alox15 for red blood cell development, we explored the impact of systemic inactivation of the Alox15 gene on mouse erythropoiesis. We found that Alox15-/- mice exhibited reduced erythrocyte counts, elevated reticulocyte counts and red cell hyperchromia. The structure of the plasma membrane of Alox15-/- erythrocytes is altered and a significant share of the red cells was present as echinocytes and/or acanthocytes. An increased share of the Alox15-/- erythrocytes cells were annexin V positive, which indicates a loss of plasma membrane asymmetry. Erythrocytes of Alox15-/- mice were more susceptible to osmotic hemolysis and exhibited a reduced ex vivo life span. When we transgenically expressed human ALOX15 in Alox15-/- mice under the control of the aP2 promoter the defective erythropoietic system was rescued and the impaired osmotic resistance was normalized. Together these data suggest the involvement Alox15 in the maturational remodeling of the plasma membrane during red cell development.


Asunto(s)
Araquidonato 12-Lipooxigenasa/fisiología , Araquidonato 15-Lipooxigenasa/administración & dosificación , Araquidonato 15-Lipooxigenasa/fisiología , Eritropoyesis , Hiperpigmentación/prevención & control , Reticulocitosis , Transgenes , Animales , Hemólisis , Hiperpigmentación/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo
14.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34360557

RESUMEN

Among the eight human glutathione peroxidase isoforms, glutathione peroxidase 4 (GPX4) is the only enzyme capable of reducing complex lipid peroxides to the corresponding alcohols. In mice, corruption of the Gpx4 gene leads to embryonic lethality and more detailed expression silencing studies have implicated the enzyme in several physiological processes (e.g., embryonal cerebrogenesis, neuronal function, male fertility). Experiments with conditional knockout mice, in which expression of the Gpx4 gene was silenced in erythroid precursors, indicated a role of Gpx4 in erythropoiesis. To test this hypothesis in a cellular in vitro model we transfected mouse erythroleukemia cells with a Gpx4 siRNA construct and followed the expression kinetics of erythropoietic gene products. Our data indicate that Gpx4 is expressed at high levels in mouse erythroleukemia cells and that expression silencing of the Gpx4 gene delays in vitro erythropoiesis. However, heterozygous expression of a catalytically inactive Gpx4 mutant (Gpx4+/Sec46Ala) did not induce a defective erythropoietic phenotype in different in vivo and ex vivo models. These data suggest that Gpx4 plays a role in erythroid differentiation of mouse erythroleukemia cells but that heterozygous expression of a catalytically inactive Gpx4 is not sufficient to compromise in vivo and ex vivo erythropoiesis.


Asunto(s)
Eritropoyesis , Leucemia Eritroblástica Aguda/patología , Mitocondrias/patología , Estrés Oxidativo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/antagonistas & inhibidores , ARN Interferente Pequeño/genética , Animales , Leucemia Eritroblástica Aguda/etiología , Leucemia Eritroblástica Aguda/metabolismo , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo
15.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33807076

RESUMEN

Arachidonic acid lipoxygenases (ALOXs) have been suggested to function as monomeric enzymes, but more recent data on rabbit ALOX15 indicated that there is a dynamic monomer-dimer equilibrium in aqueous solution. In the presence of an active site ligand (the ALOX15 inhibitor RS7) rabbit ALOX15 was crystalized as heterodimer and the X-ray coordinates of the two monomers within the dimer exhibit subtle structural differences. Using native polyacrylamide electrophoresis, we here observed that highly purified and predominantly monomeric rabbit ALOX15 and human ALOX15B are present in two conformers with distinct electrophoretic mobilities. In silico docking studies, molecular dynamics simulations, site directed mutagenesis experiments and kinetic measurements suggested that in aqueous solutions the two enzymes exhibit motional flexibility, which may impact the enzymatic properties.


Asunto(s)
Araquidonato 15-Lipooxigenasa/química , Araquidonato 15-Lipooxigenasa/metabolismo , Modelos Moleculares , Conformación Proteica , Sustitución de Aminoácidos , Animales , Catálisis , Humanos , Isoenzimas , Cinética , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Conejos
16.
Exp Lung Res ; 45(7): 167-174, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31290711

RESUMEN

Background: Inappropriate mechanical forces act on alveolar epithelial cells during mechanical ventilation e.g. in ARDS and possibly in patients with pulmonary fibrosis. These forces can cause lung injury and may contribute to the development or aggravation of pulmonary fibrosis. Aim of the study: We investigated the hypothesis that high amplitude mechanical stretching of alveolar type II (ATII) cells and lung fibroblasts promotes profibrotic processes. Material and Methods: ATII cells and fibroblasts were stretched on elastic membranes using a pattern of higher amplitudes ("unphysiological"). The production of profibrotic cytokines and extra cellular matrix (ECM) proteins were investigated in supernatants. In addition, we determined the expression of relevant microRNAs (miRNA) and the process of epithelial-mesenchymal transition (EMT) in ATII cells. Results: Unphysiological stretch of ATII cells led to increased release of TGF-ß1 into supernatants. We also found elevated protein levels of collagen I and IV in supernatants of stretched cells. By contrast, stretching of fibroblasts changed neither the expression of fibrosis-modulating factors nor ECM-proteins. However, fibroblasts significantly withstood stretch-induced cell injury and seemed to have a survival benefit. Further, stretched ATII cells exhibited a higher expression of miRNAs (miR-15b, miR-25, let-7d) relevant to EMT. The process of EMT, which is characterized by an increase of vimentin and a decrease of cytokeratin expression, was significantly accelerated due to stretching of ATII cells. Conclusion: These data provide evidence that unphysiological mechanical stretching of lung cells induced several profibrotic effects and accelerated EMT, which may have critical implications in terms of development or aggravation of pulmonary fibrosis in the clinical context.


Asunto(s)
Citocinas/metabolismo , Transición Epitelial-Mesenquimal , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/fisiología , Fibrosis Pulmonar/etiología , Animales , Masculino , MicroARNs/metabolismo , Cultivo Primario de Células , Fibrosis Pulmonar/metabolismo , Ratas Sprague-Dawley , Estrés Mecánico
17.
Proc Natl Acad Sci U S A ; 113(30): E4266-75, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27412860

RESUMEN

ALOX15 (12/15-lipoxygenase) orthologs have been implicated in maturational degradation of intracellular organelles and in the biosynthesis of antiinflammatory and proresolving eicosanoids. Here we hypothesized that lower mammals (mice, rats, pigs) express 12-lipoxygenating ALOX15 orthologs. In contrast, 15-lipoxygenating isoforms are found in higher primates (orangutans, men), and these results suggest an evolution of ALOX15 specificity. To test this hypothesis we first cloned and characterized ALOX15 orthologs of selected Catarrhini representing different stages of late primate evolution and found that higher primates (men, chimpanzees) express 15-lipoxygenating orthologs. In contrast, lower primates (baboons, rhesus monkeys) express 12-lipoxygenating enzymes. Gibbons, which are flanked in evolution by rhesus monkeys (12-lipoxygenating ALOX15) and orangutans (15-lipoxygenating ALOX15), express an ALOX15 ortholog with pronounced dual specificity. To explore the driving force for this evolutionary alterations, we quantified the lipoxin synthase activity of 12-lipoxygenating (rhesus monkey, mouse, rat, pig, humIle418Ala) and 15-lipoxygenating (man, chimpanzee, orangutan, rabbit, ratLeu353Phe) ALOX15 variants and found that, when normalized to their arachidonic acid oxygenase activities, the lipoxin synthase activities of 15-lipoxygenating ALOX15 variants were more than fivefold higher (P < 0.01) [corrected]. Comparative molecular dynamics simulations and quantum mechanics/molecular mechanics calculations indicated that, for the 15-lipoxygenating rabbit ALOX15, the energy barrier for C13-hydrogen abstraction (15-lipoxygenation) was 17 kJ/mol lower than for arachidonic acid 12-lipoxygenation. In contrast, for the 12-lipoxygenating Ile418Ala mutant, the energy barrier for 15-lipoxygenation was 10 kJ/mol higher than for 12-lipoxygenation. Taken together, our data suggest an evolution of ALOX15 specificity, which is aimed at optimizing the biosynthetic capacity for antiinflammatory and proresolving lipoxins.


Asunto(s)
Araquidonato 15-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/metabolismo , Evolución Molecular , Lipoxinas/biosíntesis , Animales , Antiinflamatorios/química , Antiinflamatorios/metabolismo , Araquidonato 15-Lipooxigenasa/química , Dominio Catalítico , Humanos , Lipoxinas/química , Ratones , Mutación , Primates , Conejos , Ratas , Especificidad de la Especie , Especificidad por Sustrato , Porcinos
18.
Skin Pharmacol Physiol ; 32(4): 192-200, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31096247

RESUMEN

BACKGROUND: Atopic diseases constitute a major health challenge for industrialized countries, and elevated levels of interleukin 4 (IL-4) frequently characterize these disorders. Previous in vitroanalyses have indicated that IL-4 strongly upregulates the expression of IL-4-sensitive genes in human monocytes. OBJECTIVE: To explore whether similar expression alterations may contribute to the pathomechanisms of atopic diseases in vivo we carried out a small-scale case-control clinical study (n = 43), in which we quantified the plasma levels of IgE and IL-4 as well as the expression of selected IL-4-sensitive genes in blood leukocytes. METHODS: 34 allergic patients suffering from allergic rhinitis (n = 11), atopic eczema (n = 11) and allergic asthma (n = 12) as well as 9 healthy control individuals were recruited. IgE and IL-4 plasma levels were determined by ELISA, and the expression of selected IL-4-sensitive gene products in blood leukocytes was quantified by qRT-PCR. In addition, the fatty acid oxygenase activity of isolated monocytes was measured by RP-HPLC analysis of the arachidonic acid oxygenation products (ex vivo activity assays). RESULTS: We found that plasma levels of IgE and IL-4 were significantly elevated in atopic patients but the degree of elevation was not sufficient to upregulate the expression of the selected IL-4-sensitive genes in circulating leukocytes. Moreover, the arachidonic acid oxygenase activity of blood monocytes was not significantly altered in atopic patients. CONCLUSION: Our data suggest that the IL-4 plasma levels of atopic patients are not high enough to impact the expression of IL-4-sensitive genes.


Asunto(s)
Hipersensibilidad Inmediata/sangre , Hipersensibilidad Inmediata/genética , Inmunoglobulina E/biosíntesis , Interleucina-4/biosíntesis , Leucocitos/fisiología , Adulto , Asma/sangre , Asma/genética , Estudios de Casos y Controles , Dermatitis Atópica/sangre , Dermatitis Atópica/genética , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oxigenasas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Rinitis Alérgica/sangre , Rinitis Alérgica/genética , Regulación hacia Arriba
19.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(2): 152-164, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29146531

RESUMEN

Pseudomonas aeruginosa is a gram-negative pathogen, which causes life-threatening infections in immunocompromized patients. These bacteria express a secreted lipoxygenase (PA-LOX), which oxygenates free arachidonic acid to 15S-hydro(pero)xyeicosatetraenoic acid. It binds phospholipids at its active site and physically interacts with lipid vesicles. When incubated with red blood cells membrane lipids are oxidized and hemolysis is induced but the structures of the oxygenated membrane lipids have not been determined. Using a lipidomic approach, we analyzed the formation of oxidized phospholipids generated during the in vitro incubation of recombinant PA-LOX with human erythrocytes and cultured human lung epithelial cells. Precursor scanning of lipid extracts prepared from these cells followed by multiple reaction monitoring and MS/MS analysis revealed a complex mixture of oxidation products. For human red blood cells this mixture comprised forty different phosphatidylethanolamine and phosphatidylcholine species carrying oxidized fatty acid residues, such as hydroxy-octadecadienoic acids, hydroxy- and keto-eicosatetraenoic acid, hydroxy-docosahexaenoic acid as well as oxygenated derivatives of less frequently occurring polyenoic fatty acids. Similar oxygenation products were also detected when cultured lung epithelial cells were employed but here the amounts of oxygenated lipids were smaller and under identical experimental conditions we did not detect major signs of cell lysis. However, live imaging indicated an impaired capacity for trypan blue exclusion and an augmented mitosis rate. Taken together these data indicate that PA-LOX can oxidize the membrane lipids of eukaryotic cells and that the functional consequences of this reaction strongly depend on the cell type.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Eritrocítica/metabolismo , Lipooxigenasa/metabolismo , Fosfolípidos/metabolismo , Pseudomonas aeruginosa/enzimología , Células A549 , Proteínas Bacterianas/química , Membrana Eritrocítica/química , Membrana Eritrocítica/patología , Humanos , Lipooxigenasa/química , Oxidación-Reducción , Fosfolípidos/química
20.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 1095-1107, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29883798

RESUMEN

Glutathione peroxidases (GPX) are anti-oxidative enzymes that reduce organic and inorganic hydroperoxides to the corresponding alcohols at the expense of reduced glutathione. The human genome involves eight GPX genes and five of them encode for selenocysteine-containing enzymes. Among the human GPX-isoforms, GPX4 is unique since it is capable of reducing complex hydroperoxy ester lipids such as hydroperoxy phospholipids and hydroperoxy cholesterolesters. Using a number of genetically modified mouse strains the biological role of GPX4 has comprehensively characterized but the molecular enzymology is less well explored. This lack of knowledge is partly related to the fact that mammalian selenoproteins are not high-level expressed in conventional overexpression systems. To explore the structural and functional properties of human GPX4 we expressed this selenoprotein in a cysteine-auxotrophic E. coli strain using a semi-chemical expression strategy. The recombinant enzyme was purified in mg amounts from the bacterial lysate to electrophoretic homogeneity and characterized with respect to its protein-chemical and enzymatic properties. Its crystal structure was solved at 1.3 Šresolution and the X-ray data indicated a monomeric protein, which contains the catalytic selenium at the redox level of the seleninic acid. These data suggest an alternative reaction mechanism involving three different redox states (selenol, selenenic acid, seleninic acid) of the catalytically active selenocysteine.


Asunto(s)
Glutatión Peroxidasa/química , Peróxido de Hidrógeno/química , Fosfolípidos/química , Selenocisteína/química , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrógeno/metabolismo , Cinética , Modelos Moleculares , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Fosfolípidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Selenocisteína/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA