Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 584(7819): 64-68, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32760048

RESUMEN

As the temperature of a cooling object decreases as it relaxes to thermal equilibrium, it is intuitively assumed that a hot object should take longer to cool than a warm one. Yet, some 2,300 years ago, Aristotle observed that "to cool hot water quickly, begin by putting it in the sun"1,2. In the 1960s, this counterintuitive phenomenon was rediscovered as the statement that "hot water can freeze faster than cold water" and has become known as the Mpemba effect3; it has since been the subject of much experimental investigation4-8 and some controversy8,9. Although many specific mechanisms have been proposed6,7,10-16, no general consensus exists as to the underlying cause. Here we demonstrate the Mpemba effect in a controlled setting-the thermal quench of a colloidal system immersed in water, which serves as a heat bath. Our results are reproducible and agree quantitatively with calculations based on a recently proposed theoretical framework17. By carefully choosing parameters, we observe cooling that is exponentially faster than that observed using typical parameters, in accord with the recently predicted strong Mpemba effect18. Our experiments outline the generic conditions needed to accelerate heat removal and relaxation to thermal equilibrium and support the idea that the Mpemba effect is not simply a scientific curiosity concerning how water freezes into ice-one of the many anomalous features of water19-but rather the prototype for a wide range of anomalous relaxation phenomena of broad technological importance.

2.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35078935

RESUMEN

We report anomalous heating in a colloidal system, an experimental observation of the inverse Mpemba effect, where for two initial temperatures lower than the temperature of the thermal bath, the colder of the two systems heats up faster when coupled to the same thermal bath. For an overdamped, Brownian colloidal particle moving in a tilted double-well potential, we find a nonmonotonic dependence of the heating times on the initial temperature of the system. Entropic effects make the inverse Mpemba effect generically weaker-harder to observe-than the usual Mpemba effect (anomalous cooling). We also observe a strong version of anomalous heating, where a cold system heats up exponentially faster than systems prepared under slightly different conditions.

3.
J Am Chem Soc ; 146(22): 15562-15575, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38771742

RESUMEN

Sulfur trioxide (SO3) is an important oxide of sulfur and a key intermediate in the formation of sulfuric acid (H2SO4, SA) in the Earth's atmosphere. This conversion to SA occurs rapidly due to the reaction of SO3 with a water dimer. However, gas-phase SO3 has been measured directly at concentrations that are comparable to that of SA under polluted mega-city conditions, indicating gaps in our current understanding of the sources and fates of SO3. Its reaction with atmospheric acids could be one such fate that can have significant implications for atmospheric chemistry. In the present investigation, laboratory experiments were conducted in a flow reactor to generate a range of previously uncharacterized condensable sulfur-containing reaction products by reacting SO3 with a set of atmospherically relevant inorganic and organic acids at room temperature and atmospheric pressure. Specifically, key inorganic acids known to be responsible for most ambient new particle formation events, iodic acid (HIO3, IA) and SA, are observed to react promptly with SO3 to form iodic sulfuric anhydride (IO3SO3H, ISA) and disulfuric acid (H2S2O7, DSA). Carboxylic sulfuric anhydrides (CSAs) were observed to form by the reaction of SO3 with C2 and C3 monocarboxylic (acetic and propanoic acid) and dicarboxylic (oxalic and malonic acid)-carboxylic acids. The formed products were detected by a nitrate-ion-based chemical ionization atmospheric pressure interface time-of-flight mass spectrometer (NO3--CI-APi-TOF; NO3--CIMS). Quantum chemical methods were used to compute the relevant SO3 reaction rate coefficients, probe the reaction mechanisms, and model the ionization chemistry inherent in the detection of the products by NO3--CIMS. Additionally, we use NO3--CIMS ambient data to report that significant concentrations of SO3 and its acid anhydride reaction products are present under polluted, marine and polar, and volcanic plume conditions. Considering that these regions are rich in the acid precursors studied here, the reported reactions need to be accounted for in the modeling of atmospheric new particle formation.

4.
Langmuir ; 40(14): 7300-7309, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38536237

RESUMEN

DNA sequencing and sensing using nanopore technology delves critically into the alterations in the measurable electrical signal as single-stranded DNA is drawn through a tiny passage. To make such precise measurements, however, slowing down the DNA in the tightly confined passage is a key requirement, which may be achieved by grafting the nanopore walls with a polyelectrolyte layer (PEL). This soft functional layer at the wall, under an off-design condition, however, may block the DNA passage completely, leading to the complete loss of output signal from the nanobio sensor. Whereas theoretical postulates have previously been put forward to explain the essential physics of DNA translocation in nanopores, these have turned out to be somewhat inadequate when confronted with the experimental findings on functionalized nanopores, including the prediction of the events of complete signal losses. Circumventing these constraints, herein we bring out a possible decisive role of the interplay between the inevitable variabilities in the ionic distribution along the nanopore axis due to its finite length as opposed to its idealized "infinite" limit as well as the differential permittivity of PEL and bulk solution that cannot be captured by the commonly used one-dimensional variant of the electrical double layer theory. Our analysis, for the first time, captures variations in the ionic concentration distribution across multidimensional physical space and delineates its impact on the DNA translocation characteristics that have hitherto remained unaddressed. Our results reveal possible complete blockages of DNA translocation as influenced by less-than-threshold permittivity values or greater-than-threshold grafting densities of the PEL. In addition, electrohydrodynamic blocking is witnessed due to the ion-selective nature of the nanopore at low ionic concentrations. Hence, our study establishes a functionally active regime over which the PEL layer in a finite-length nanopore facilitates controllable DNA translocation, enabling successful sequencing and sensing through the explicit modulation of translocation speed.


Asunto(s)
Nanoporos , Polielectrolitos , ADN , ADN de Cadena Simple , Iones
5.
Environ Sci Technol ; 58(24): 10664-10674, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38850427

RESUMEN

New particle formation (NPF) is a major source of atmospheric aerosol particles, including cloud condensation nuclei (CCN), by number globally. Previous research has highlighted that NPF is less frequent but more intense at roadsides compared to urban background. Here, we closely examine NPF at both background and roadside sites in urban Central Europe. We show that the concentration of oxygenated organic molecules (OOMs) is greater at the roadside, and the condensation of OOMs along with sulfuric acid onto new particles is sufficient to explain the growth at both sites. We identify a hitherto unreported traffic-related OOM source contributing 29% and 16% to total OOMs at the roadside and background, respectively. Critically, this hitherto undiscovered OOM source is an essential component of urban NPF. Without their contribution to growth rates and the subsequent enhancements to particle survival, the number of >50 nm particles produced by NPF would be reduced by a factor of 21 at the roadside site. Reductions to hydrocarbon emissions from road traffic may thereby reduce particle numbers and CCN counts.


Asunto(s)
Material Particulado , Emisiones de Vehículos , Contaminantes Atmosféricos , Monitoreo del Ambiente , Tamaño de la Partícula , Aerosoles
6.
J Phys Chem A ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38917032

RESUMEN

This study investigates the complex interaction between ozone and the autoxidation of 1-hexene over a wide temperature range (300-800 K), overlapping atmospheric and combustion regimes. It is found that atmospheric molecular mechanisms initiate the oxidation of 1-hexene from room temperature up to combustion temperatures, leading to the formation of highly oxygenated organic molecules. As temperature rises, the highly oxygenated organic molecules contribute to radical-branching decomposition pathways inducing a high reactivity in the low-temperature combustion region, i.e., from 550 K. Above 650 K, the thermal decomposition of ozone into oxygen atoms becomes the dominant process, and a remarkable enhancement of the conversion is observed due to their diradical nature, counteracting the significant negative temperature coefficient behavior usually observed for 1-hexene. In order to better characterize the formation of heavy oxygenated organic molecules at the lowest temperatures, two analytical performance methods have been combined for the first time: synchrotron-based mass-selected photoelectron spectroscopy and orbitrap chemical ionization mass spectrometry. At the lowest studied temperatures (below 400 K), this analytical work has demonstrated the formation of the ketohydroperoxides usually found during the LTC oxidation of 1-hexene, as well as of molecules containing up to nine O atoms.

7.
Subst Use Misuse ; 59(4): 469-477, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37982451

RESUMEN

OBJECTIVE: Non-tobacco blunt wraps (N-TBWs), which entered the marketplace in 2017, are being promoted as an alternative to traditional TBWs (e.g., cigarillos) for blunt smoking. The lack of studies on these novel products warrants an investigation. This study was the first to explore blunt smokers' perceptions about N-TBWs and the extent of product marketing on Twitter. METHODS: A corpus of tweets from Twitter, posted between January 2017 and November 2021, were identified by a Boolean search string (N = 149,343), where 48,695 tweets were classified as relevant by a machine learning algorithm. These relevant tweets were further screened and labeled as promotional or organic based on product URLs, usernames, keywords, or hashtags. Topic modeling using Dirichlet Allocation was then employed for identifying latent patterns of words among relevant tweets. The Social Networking Potential (SNP) score was employed for identifying influential accounts. RESULTS: Most relevant tweets (89%) were organic, non-promotional expressions about N-TBWs. Account users who only posted non-promotional tweets had a significantly higher SNP than those who only posted promotional tweets. Yet, neither of the two groups of account users consisted of known celebrities. Topic modeling revealed three broad groups of topics (7 in total) denoting the attributes of hemp N-TBWs, interest in non-hemp N-TBWs, and product marketing. CONCLUSIONS: The large proportion of organic tweets is indicative of the nascency of N-TBWs, which will need to be marketed more extensively if they are to replace cigar products used by blunt smokers.


Asunto(s)
Medios de Comunicación Sociales , Productos de Tabaco , Humanos , Mercadotecnía , Fumar
8.
Homeopathy ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714214

RESUMEN

BACKGROUND: Prior vaccination is often studied for its impact on individuals' post-infection prognosis. Ayurveda, Yoga, Unani, Siddha and Homeopathy (AYUSH) medicines, advised by the Government of India as prophylaxis during the first wave of the coronavirus disease 2019 (COVID-19) pandemic, were consumed by the masses in 2020. A study was therefore undertaken to observe any association between the prior usage of AYUSH prophylactic medicines and post-infection severity as reported by recovered COVID-19 individuals. METHODS: This was a retrospective, multi-centre, cohort study conducted in 21 cities of India from 5th August to 30th November 2020. Data from recovered COVID-19 patients, of either sex or any age, captured information about AYUSH prophylactic medicines intake prior to infection, disease severity, symptomatology, duration of complaints, etc. The study participants were grouped into AYUSH intake and non-intake. Primary composite outcome was the disease clinical course. Secondary clinical outcomes were the rate of and time to clinical recovery. RESULTS: Data of 5,023 persons were analysed. Ayurveda or homeopathic prophylactic medicines were consumed by more than half of the study participants: that is, 56.85% (n = 1,556) and 56.81% (n = 1,555) respectively. The overall adjusted protective effect (PE) of AYUSH prophylactic intake against moderate/severe forms of COVID-19 disease was 56.7% (95% confidence interval [CI], 48.7 to 63.50; p < 0.001). Adjusted PE for homeopathy and Siddha was 52.9% (95% CI, 42.30 to 61.50; p < 0.001) and 59.8% (95% CI, 37.80 to 74.10; p < 0.001), respectively. A statistically significant association was found between AYUSH prophylactic medicine intake and clinical recovery more frequently by the 3rd day of illness (χ2 = 9.01; p = 0.002). Time to resolution of symptoms in the AYUSH intake group was on average 0.3 days earlier than in the non-intake group (p = 0.002). CONCLUSION: AYUSH prophylactics were associated with statistically significant levels of protection against COVID-19 disease severity. Amongst these, previous intake of homeopathy or Siddha medicines was associated with some protection against moderate/severe illness and with a somewhat quicker clinical recovery. Prospective studies with experimental research design are needed to validate the findings of this study. STUDY REGISTRATION: Clinical Trials Registry-India (CTRI/2020/08/027000).

9.
J Physiol ; 601(3): 567-606, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36533558

RESUMEN

Nocturnal hypoxaemia, which is common in chronic obstructive pulmonary disease (COPD) patients, is associated with skeletal muscle loss or sarcopenia, which contributes to adverse clinical outcomes. In COPD, we have defined this as prolonged intermittent hypoxia (PIH) because the duration of hypoxia in skeletal muscle occurs through the duration of sleep followed by normoxia during the day, in contrast to recurrent brief hypoxic episodes during obstructive sleep apnoea (OSA). Adaptive cellular responses to PIH are not known. Responses to PIH induced by three cycles of 8 h hypoxia followed by 16 h normoxia were compared to those during chronic hypoxia (CH) or normoxia for 72 h in murine C2C12 and human inducible pluripotent stem cell-derived differentiated myotubes. RNA sequencing followed by downstream analyses were complemented by experimental validation of responses that included both unique and shared perturbations in ribosomal and mitochondrial function during PIH and CH. A sarcopenic phenotype characterized by decreased myotube diameter and protein synthesis, and increased phosphorylation of eIF2α (Ser51) by eIF2α kinase, and of GCN-2 (general controlled non-derepressed-2), occurred during both PIH and CH. Mitochondrial oxidative dysfunction, disrupted supercomplex assembly, lower activity of Complexes I, III, IV and V, and reduced intermediary metabolite concentrations occurred during PIH and CH. Decreased mitochondrial fission occurred during CH. Physiological relevance was established in skeletal muscle of mice with COPD that had increased phosphorylation of eIF2α, lower protein synthesis and mitochondrial oxidative dysfunction. Molecular and metabolic responses with PIH suggest an adaptive exhaustion with failure to restore homeostasis during normoxia. KEY POINTS: Sarcopenia or skeletal muscle loss is one of the most frequent complications that contributes to mortality and morbidity in patients with chronic obstructive pulmonary disease (COPD). Unlike chronic hypoxia, prolonged intermittent hypoxia is a frequent, underappreciated and clinically relevant model of hypoxia in patients with COPD. We developed a novel, in vitro myotube model of prolonged intermittent hypoxia with molecular and metabolic perturbations, mitochondrial oxidative dysfunction, and consequent sarcopenic phenotype. In vivo studies in skeletal muscle from a mouse model of COPD shared responses with our myotube model, establishing the pathophysiological relevance of our studies. These data lay the foundation for translational studies in human COPD to target prolonged, nocturnal hypoxaemia to prevent sarcopenia in these patients.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Sarcopenia , Humanos , Ratones , Animales , Sarcopenia/metabolismo , Proteostasis , Músculo Esquelético/metabolismo , Hipoxia/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/complicaciones
10.
Langmuir ; 39(13): 4589-4600, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36917549

RESUMEN

Mucosal drug delivery plays an increasing role in the clinical setting owing to mucin's advantageous biochemical and pharmacological properties. However, how this transport system recognizes different substrates remains unclear. In this study, we explore the mechanism of bioactive (quercetin and berberine) promiscuity of mucin using various spectroscopic techniques and molecular dynamics simulations. The UV-visible spectroscopy results and the decreased fluorescence intensity of mucin in the presence of the bioactive compounds via a static quenching mechanism confirmed ground-state complex formation between the bioactives and mucin. The binding constants (Kb) were evaluated at different temperatures to afford Kb values of ∼104 Lmol-1, demonstrating the moderate and reasonable affinity of the bioactives for mucin, yielding greater diffusion into the tissues. Thermodynamic analysis and molecular dynamics (MD) simulations demonstrate that mucin-bioactive complex formation occurs primarily because of electrostatic/ionic interactions, while hydrophobic interactions were also crucial in stabilizing the complex. Far-UV circular dichroism spectroscopy showed that bioactive binding induced secondary structural changes in mucin. Sitemap and MD simulation indicated the principal binding site of mucin for the bioactives. This study also provides insight into the bioactives promiscuity of mucin in the presence of a crowded environment, which is relevant to the biological activity of mucin in vivo. An in vitro drug release study revealed that crowding assisted drug release in an enhanced burst manner compared with that in a dilute buffer system. This work thus provides fresh insight into drug absorption and distribution in the native cellular environment and helps direct new drug design and use in pharmaceutical and pharmacological fields.


Asunto(s)
Simulación de Dinámica Molecular , Mucinas , Análisis Espectral , Termodinámica , Sitios de Unión , Simulación del Acoplamiento Molecular , Espectrometría de Fluorescencia , Dicroismo Circular , Unión Proteica
11.
J Org Chem ; 88(9): 5457-5472, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-36995016

RESUMEN

A unified strategy for the construction of bicyclic furans and pyrroles is developed from tert-propargyl alcohols and α-acyl cyclic ketones using an alkaline earth catalyst under solvent-free conditions. The reaction proceeds via the formation of a ß-keto allene intermediate, which upon treatment with a tert-amine underwent thermodynamic enol formation and a subsequent annulation to form bicyclic furans. Interestingly, the same allene forms bicyclic pyrrole with primary amines. The reaction shows excellent atom economy as water is the only byproduct formed in bicyclic furans. The generality of the reaction is well established. Gram-scale synthesis and synthetic applications are demonstrated.

12.
Phys Chem Chem Phys ; 25(41): 28205-28212, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37823187

RESUMEN

A series of acyl peroxy radical H-shifts were systematically studied using computational approaches. Acyl peroxy radicals were categorized into small- (ethanal-pentanal), medium- (hexanal and heptanal) and large-sized (octanal and nonanal) molecules. The H-shifts spanning from 1,4 to 1,9 were inspected for each studied system. For all acyl peroxy radicals, it is the combination of barrier heights and quantum mechanical tunneling that explains the yield of the peracid alkyl radical product. We used the ROHF-ROCCSD(T)-F12a/VDZ-F12//ωB97X-D/aug-cc-pVTZ level of theory to estimate the barrier heights and the subsequent rate coefficients with the exception of the smallest acyl peroxy radical ethanal, for which MN15 density functional was applied. The estimated multiconformer H-shift rate coefficients were found to be in the range of 10-2 s-1 to 10-1 s-1 for the fastest H-migrations. The determined rates imply that these H-shift reactions are often competitive with other RO2 loss processes and should be considered as a path to functionalization in modelling not only rural but also urban air quality.

13.
J Prosthet Dent ; 130(5): 799-801, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35369982

RESUMEN

Impression procedures for recording large maxillofacial defects are tedious and difficult because of the unavailability of stock impression trays. This article describes the procedure of fabricating a straightforward facial moulage with predictable accuracy by using a reusable radiotherapy thermoplastic sheet.


Asunto(s)
Materiales de Impresión Dental , Cara , Modelos Anatómicos , Técnica de Impresión Dental
14.
Environ Dev Sustain ; : 1-41, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37362997

RESUMEN

Developing markets are using sustainable development potential to reach zero-carbon goals. Due to the limitation of natural resources, companies need to use environmentally friendly manufacturing to develop a circular economy (CE). Green finance (GF) and the CE are linked in a systematic and complex approach; therefore, it was essential to employ the coupling coordination-level framework to explain their relationship and feedback. Any study linking green financing and CE together has been found. The objective of this research is to explore this twofold domain and determine its main characteristics. To address this objective, a comprehensive review of the literature was conducted, supplemented by a bibliometric analysis. The results confirm that GF has the potential to help society, sustainability, and the prevention to climate shifts, investing in the CE. There are many hurdles to overcome, including inadequate knowledge about CE and GF, ambiguous definitions, a lack of coherence between legal frameworks on CE and green financing, unclear laws, and a lack of financially viable motivation for investors and financial institutions that are ready to promote in sustainability. This study explores CE and GF domains. Managers may readily increase their understanding of methods, strategies, and technical solutions beneficial to assist their operations toward a green economy depending on various CE and GF elements. Finally, based on a categorization of GF types, the assessment identifies future investment potential consequences of green financing in the CE.

15.
Environ Dev Sustain ; : 1-44, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36687737

RESUMEN

The current industrial and economic activities in Sindh Province, Pakistan, polluted the region's water, air, soil, and marine resources. However, there is a rising demand for eco-friendly production, and it is important to develop new policies and tools to combat environmental degradation and enhance economic development. Cleaner Production (CP) provides opportunities to address many of these issues. Employed method for this study was based on three approaches: a literature review and stakeholder mapping; a collection of data and information from key stakeholders through focal group discussions, consultative workshops, and one-on-one meetings; and analysis and synthesis of data that were gathered from different sources. The analysis of collected information provides an overview of CP strategies moving forward. Participant workshops gave in-depth information on policy implementation, technological impediments to methods that have been employed elsewhere, and needed capacity building as well as financial consequences of policy implementation. Through increasing financial resources and institutional resources, the expansion of CP will help to replace the conventional methods of waste treatment with an eco-efficiency approach to preventing pollution at the source, thus reducing the need for expensive pollution control and management costs for environmental compliance. Experiences, achievements, and implementation pitfalls from this study can provide a lesson to other developing countries to improve their economic and environmental sustainability.

16.
J Biol Chem ; 297(4): 101253, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34587475

RESUMEN

Apoptosis is a programmed cell death that efficiently removes damaged cells to maintain tissue homeostasis. Defect in apoptotic machinery can lead to tumor development, progression, and resistance to chemotherapy. PUMA (p53 upregulated modulator of apoptosis) and BAX (BCL2-associated X protein) are among the most well-known inducers of apoptosis. It has been reported that expression levels of BAX and PUMA are controlled at the posttranslational level by phosphorylation. However, the posttranslational regulation of these proapoptotic proteins remains largely unexplored. In this study, using biochemical, molecular biology, flow cytometric, and immunohistochemistry techniques, we show that PUMA and BAX are the direct target of the F-box protein FBXL20, which restricts their cellular levels. FBXL20 directs the proteasomal degradation of PUMA and BAX in a protein kinase AKT1-dependent manner to promote cancer cell proliferation and tumor growth. Interestingly, inactivation of AKT1 results in activation of another protein kinase GSK3α/ß, which facilitates the proteasomal degradation of FBXL20 by another F-box protein, FBXO31. Thus, a switch between two signaling kinases AKT1 and GSK3α/ß modulates the functional activity of these proapoptotic regulators, thereby determining cell survival or death. RNAi-mediated ablation of FBXL20 results in increased levels of PUMA as well as BAX, which further enhances the sensitivity of cancer cells to chemotherapeutic drugs. We showed that high level expression of FBXL20 in cancer cells reduces therapeutic drug-induced apoptosis and promotes chemoresistance. Overall, this study highlights the importance of targeting FBXL20 in cancers in conjunction with chemotherapy and may represent a promising anticancer strategy to overcome chemoresistance.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Neoplasias de la Mama/metabolismo , Proteínas F-Box/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/genética , Proteínas F-Box/genética , Femenino , Células HEK293 , Humanos , Células MCF-7 , Proteínas Proto-Oncogénicas/genética , Proteína X Asociada a bcl-2/genética
17.
J Biol Chem ; 297(3): 101023, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34343564

RESUMEN

Ammonia is a cytotoxic molecule generated during normal cellular functions. Dysregulated ammonia metabolism, which is evident in many chronic diseases such as liver cirrhosis, heart failure, and chronic obstructive pulmonary disease, initiates a hyperammonemic stress response in tissues including skeletal muscle and in myotubes. Perturbations in levels of specific regulatory molecules have been reported, but the global responses to hyperammonemia are unclear. In this study, we used a multiomics approach to vertically integrate unbiased data generated using an assay for transposase-accessible chromatin with high-throughput sequencing, RNA-Seq, and proteomics. We then horizontally integrated these data across different models of hyperammonemia, including myotubes and mouse and human muscle tissues. Changes in chromatin accessibility and/or expression of genes resulted in distinct clusters of temporal molecular changes including transient, persistent, and delayed responses during hyperammonemia in myotubes. Known responses to hyperammonemia, including mitochondrial and oxidative dysfunction, protein homeostasis disruption, and oxidative stress pathway activation, were enriched in our datasets. During hyperammonemia, pathways that impact skeletal muscle structure and function that were consistently enriched were those that contribute to mitochondrial dysfunction, oxidative stress, and senescence. We made several novel observations, including an enrichment in antiapoptotic B-cell leukemia/lymphoma 2 family protein expression, increased calcium flux, and increased protein glycosylation in myotubes and muscle tissue upon hyperammonemia. Critical molecules in these pathways were validated experimentally. Human skeletal muscle from patients with cirrhosis displayed similar responses, establishing translational relevance. These data demonstrate complex molecular interactions during adaptive and maladaptive responses during the cellular stress response to hyperammonemia.


Asunto(s)
Genómica , Hiperamonemia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteómica , Transcriptoma , Animales , Citometría de Flujo , Humanos , Hiperamonemia/genética , Immunoblotting/métodos , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados
18.
J Med Virol ; 94(8): 3521-3539, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35355267

RESUMEN

SARS-CoV-2 Omicron with its lineages BA.1, BA.2, and BA.3 has triggered a fresh wave of Covid-19 infections. Though, Omicron has, so far, produced mild symptoms, its genome contains 60 mutations including 37 in the spike protein and 15 in the receptor-binding domain. Thirteen sites conserved in previous SARS-CoV-2 variants carry mutations in Omicron. Many mutations have shown evolution under positive selection. Omicron's giant mutational leap has raised concerns as there are signs of higher virus infectivity rate, pathogenesis, reinfection, and immune evasion. Preliminary studies have reported waning of immunity after two-dose primary vaccine regime, need for the boosters, folds reduction in vaccine effectiveness and neutralizing antibodies even after boosting and significant neutralization resistance with the therapeutic monoclonal, polyclonal, and convalescent antibodies against Omicron. The narrative that "Omicron is mild," therefore, needs time to be tested with a deeper, scientific dwelling into the facts.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , Glicoproteínas de Membrana/genética , Mutación , Pruebas de Neutralización , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas del Envoltorio Viral/genética
19.
Hepatology ; 73(5): 1892-1908, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32799332

RESUMEN

BACKGROUND AND AIMS: Despite the high clinical significance of sarcopenia in alcohol-associated cirrhosis, there are currently no effective therapies because the underlying mechanisms are poorly understood. We determined the mechanisms of ethanol-induced impaired phosphorylation of mechanistic target of rapamycin complex 1 (mTORC1) and adenosine monophosphate-activated protein kinase (AMPK) with consequent dysregulated skeletal muscle protein homeostasis (balance between protein synthesis and breakdown). APPROACH AND RESULTS: Differentiated murine myotubes, gastrocnemius muscle from mice with loss and gain of function of regulatory genes following ethanol treatment, and skeletal muscle from patients with alcohol-associated cirrhosis were used. Ethanol increases skeletal muscle autophagy by dephosphorylating mTORC1, circumventing the classical kinase regulation by protein kinase B (Akt). Concurrently and paradoxically, ethanol exposure results in dephosphorylation and inhibition of AMPK, an activator of autophagy and inhibitor of mTORC1 signaling. However, AMPK remains inactive with ethanol exposure despite lower cellular and tissue adenosine triphosphate, indicating a "pseudofed" state. We identified protein phosphatase (PP) 2A as a key mediator of ethanol-induced signaling and functional perturbations using loss and gain of function studies. Ethanol impairs binding of endogenous inhibitor of PP2A to PP2A, resulting in methylation and targeting of PP2A to cause dephosphorylation of mTORC1 and AMPK. Activity of phosphoinositide 3-kinase-γ (PI3Kγ), a negative regulator of PP2A, was decreased in response to ethanol. Ethanol-induced molecular and phenotypic perturbations in wild-type mice were observed in PI3Kγ-/- mice even at baseline. Importantly, overexpressing kinase-active PI3Kγ but not the kinase-dead mutant reversed ethanol-induced molecular perturbations. CONCLUSIONS: Our study describes the mechanistic underpinnings for ethanol-mediated dysregulation of protein homeostasis by PP2A that leads to sarcopenia with a potential for therapeutic approaches by targeting the PI3Kγ-PP2A axis.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Hepatopatías Alcohólicas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína Fosfatasa 2/metabolismo , Sarcopenia/etiología , Animales , Femenino , Homeostasis , Humanos , Inmunoprecipitación , Hepatopatías Alcohólicas/complicaciones , Hepatopatías Alcohólicas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mioblastos/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patología
20.
Inflamm Res ; 71(5-6): 711-722, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35578028

RESUMEN

OBJECTIVE: Sitagliptin and other dipeptidyl peptidase (DPP)-4 inhibitors/gliptins are antidiabetic drugs known to improve lipid profile, and confer anti-inflammatory and anti-fibrotic effects, which are independent of their hypoglycemic effects. However, in our previous short-term (35 days) studies, we showed that sitagliptin accentuates the hepato-inflammatory effects of high dietary cholesterol (Cho) in male Sprague-Dawley rats. Since most type 2 diabetics also present with lipid abnormalities and use DPP-4 inhibitors for glucose management, the present study was conducted to assess the impact of sitagliptin during long-term (98 days) feeding of a high Cho diet. An additional component of the present investigation was the inclusion of other gliptins to determine if hepatic steatosis, necro-inflammation, and fibrosis were specific to sitagliptin or are class effects. METHODS: Adult male Sprague-Dawley rats were fed control or high Cho (2.0%) diets, and gavaged daily (from day 30 through 98) with vehicle or DPP-4 inhibitors (sitagliptin or alogliptin or saxagliptin). On day 99 after a 4 h fast, rats were euthanized. Blood and liver samples were collected to measure lipids and cytokines, and for histopathological evaluation, determination of hepatic lesions (steatosis, necrosis, inflammation, and fibrosis) using specific staining and immunohistochemical methods. RESULTS: Compared to controls, the high Cho diet produced a robust increase in NASH like phenotype that included increased expression of hepatic (Tnfa, Il1b, and Mcp1) and circulatory (TNFα and IL-1ß) markers of inflammation, steatosis, necrosis, fibrosis, and mononuclear cell infiltration. These mononuclear cells were identified as macrophages and T cells, and their recruitment in the liver was facilitated by marked increases in endothelium-expressed cell adhesion molecules. Importantly, treatment with DPP-4 inhibitors (3 tested) neither alleviated the pathologic responses induced by high Cho diet nor improved lipid profile. CONCLUSIONS: The potential lipid lowering effects of DPP-4 inhibitors were diminished by high Cho (a significant risk factor for inducing liver damage). The robust inflammatory responses induced by high Cho feeding in long-term experiment were not exacerbated by DPP-4 inhibitors and a consistent hepatic inflammatory environment persisted, implying a prospective physiological adaptation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Hipercolesterolemia , Animales , Colesterol en la Dieta , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dieta , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Fibrosis , Hipoglucemiantes , Inflamación/patología , Masculino , Necrosis/tratamiento farmacológico , Estudios Prospectivos , Ratas , Ratas Sprague-Dawley , Fosfato de Sitagliptina/farmacología , Fosfato de Sitagliptina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA