Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med Chem Res ; 29(8): 1463-1477, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32837136

RESUMEN

In an effort to develop potent anti-influenza drugs that inhibit the activity of influenza virus RNA-dependent RNA polymerase (IAV RdRp), a database of nucleoside triphosphates with ~800 molecules were docked with the homology model of IAV RdRp from A/PR/8/34/H1N1 strain. Out of top 12 molecules that bind with higher affinities to the catalytic site of IAV RdRp above and below the PB1 priming loop, only seven molecules decreased the transcriptional activity of the viral RNA polymerase with an IC50 in the range of 0.09-3.58 µM. Molecular docking combining with experimental study indicated that the molecules with linear chain are more effective in inhibiting IAV RdRp replication than the molecules with V-shaped and are cyclic in nature. A correlation between ΔG and LogIC50 for these seven compounds resulted an R 2 value of 0.73. Overall, these newly developed seven nucleoside triphosphates lay a strong foundation for the future development of a new therapeutics that can satisfy the Lipinski's rule of five exhibiting high specificity to the catalytic site of influenza-A viruses.

2.
Int J Mol Sci ; 20(22)2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703296

RESUMEN

Alzheimer's disease (AD) is the most devastating neurodegenerative disorder that affects the aging population worldwide. Endogenous and exogenous factors are involved in triggering this complex and multifactorial disease, whose hallmark is Amyloid-ß (Aß), formed by cleavage of amyloid precursor protein by ß- and γ-secretase. While there is no definitive cure for AD to date, many neuroprotective natural products, such as polyphenol and carotenoid compounds, have shown promising preventive activity, as well as helping in slowing down disease progression. In this article, we focus on the chemistry as well as structure of carotenoid compounds and their neuroprotective activity against Aß aggregation using molecular docking analysis. In addition to examining the most prevalent anti-amyloidogenic carotenoid lutein, we studied cryptocapsin, astaxanthin, fucoxanthin, and the apocarotenoid bixin. Our computational structure-based drug design analysis and molecular docking simulation revealed important interactions between carotenoids and Aß via hydrogen bonding and van der Waals interactions, and shows that carotenoids are powerful anti-amyloidogenic molecules with a potential role in preventing AD, especially since most of them can cross the blood-brain barrier and are considered nutraceutical compounds. Our studies thus illuminate mechanistic insights on how carotenoids inhibit Aß aggregation. The potential role of carotenoids as novel therapeutic molecules in treating AD and other neurodegenerative disorders are discussed.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Carotenoides , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Carotenoides/química , Carotenoides/uso terapéutico , Humanos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/uso terapéutico
3.
J Biomol Struct Dyn ; : 1-9, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37551020

RESUMEN

Structural analysis of the central 12 residue stretch of Amyloid precursor protein Intracellular Domain (AICD16-27: T-S-I-H-H-G-V-V-E-V-D-A) was carried out by NMR and homology modeling. Further, metal and polyphenol interactions were also carried out for these 12 residues stretch, as it contains two critical Histidine residues, which were observed to be perturbed via NMR. A full length 57 residues AICD model was generated via computational methods, to ascertain its overall conformation, as the entire structure was unavailable. An overlay of this AICD entire model with the full length Aß-42 structure matched well, implying similar properties. Docking studies with metals and polyphenols indicated involvement of the key Histidine residues highlighting their roles towards neurodegeneration and AD pathophysiology.Communicated by Ramaswamy H. Sarma.

4.
Heliyon ; 7(12): e08407, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34917786

RESUMEN

Diabetes is a metabolic disorder which is characterised by high levels of blood glucose. Most of the oral drugs available today for the treatment of diabetes are associated with various side-effects. Herbal medicines are considered relatively safer alternatives and Gymnema sylvestre (GS) is one such known traditional medicinal plant widely used for the treatment of diabetes. In our previous work, we isolated active triterpene glycosides (TG) from Gymnema sylvestre (GS) and screened for yeast α-glucosidase inhibitory activity in vitro. The present study aims to use in silico techniques to understand and predict the inhibitory role of the isolated triterpene glycosides (TG); Gymnemic acid I, IV, VII and gymnemagenin against disaccharidase enzymes. enzyme kinetic analysis using Lineweaver-Burk plot indicated that TG competitively inhibited yeast α-glucosidase at IC50 concentration with Ki 0.0028 µM. TG also exhibited significant inhibitory activity against mammalian sucrase and maltase respectively, compared to control. PRACTICAL APPLICATIONS: The molecular docking simulation reveals that TG is capable of docking well with crystallographic structures of the selected enzyme targets. Inhibition of α-glucosidases could delay the absorption of glucose in the blood during post-meal digestion. Thus the current study highlights the dietary intervention of TG towards the selected enzyme targets, thus making TG a potential nutraceutical candidate towards management of blood glucose.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA