Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 77(2): 213-227.e5, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31735641

RESUMEN

Macrophages form a major cell population in the tumor microenvironment. They can be activated and polarized into tumor-associated macrophages (TAM) by the tumor-derived soluble molecules to promote tumor progression and metastasis. Here, we used comparative metabolomics coupled with biochemical and animal studies to show that cancer cells release succinate into their microenvironment and activate succinate receptor (SUCNR1) signaling to polarize macrophages into TAM. Furthermore, the results from in vitro and in vivo studies revealed that succinate promotes not only cancer cell migration and invasion but also cancer metastasis. These effects are mediated by SUCNR1-triggered PI3K-hypoxia-inducible factor 1α (HIF-1α) axis. Compared with healthy subjects and tumor-free lung tissues, serum succinate levels and lung cancer SUCNR1 expression were elevated in lung cancer patients, suggesting an important clinical relevance. Collectively, our findings indicate that the secreted tumor-derived succinate belongs to a novel class of cancer progression factors, controlling TAM polarization and promoting tumorigenic signaling.


Asunto(s)
Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Macrófagos/metabolismo , Metástasis de la Neoplasia/patología , Receptores Acoplados a Proteínas G/metabolismo , Ácido Succínico/metabolismo , Células A549 , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Células HT29 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células MCF-7 , Macrófagos/patología , Ratones Endogámicos C57BL , Células PC-3 , Transducción de Señal/fisiología , Microambiente Tumoral/fisiología
2.
J Biomed Sci ; 30(1): 32, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217939

RESUMEN

BACKGROUND: Nutrient limitations often lead to metabolic stress during cancer initiation and progression. To combat this stress, the enzyme heme oxygenase 1 (HMOX1, commonly known as HO-1) is thought to play a key role as an antioxidant. However, there is a discrepancy between the level of HO-1 mRNA and its protein, particularly in cells under stress. O-linked ß-N-acetylglucosamine (O-GlcNAc) modification of proteins (O-GlcNAcylation) is a recently discovered cellular signaling mechanism that rivals phosphorylation in many proteins, including eukaryote translation initiation factors (eIFs). The mechanism by which eIF2α O-GlcNAcylation regulates translation of HO-1 during extracellular arginine shortage (ArgS) remains unclear. METHODS: We used mass spectrometry to study the relationship between O-GlcNAcylation and Arg availability in breast cancer BT-549 cells. We validated eIF2α O-GlcNAcylation through site-specific mutagenesis and azido sugar N-azidoacetylglucosamine-tetraacylated labeling. We then evaluated the effect of eIF2α O-GlcNAcylation on cell recovery, migration, accumulation of reactive oxygen species (ROS), and metabolic labeling during protein synthesis under different Arg conditions. RESULTS: Our research identified eIF2α, eIF2ß, and eIF2γ, as key O-GlcNAcylation targets in the absence of Arg. We found that O-GlcNAcylation of eIF2α plays a crucial role in regulating antioxidant defense by suppressing the translation of the enzyme HO-1 during Arg limitation. Our study showed that O-GlcNAcylation of eIF2α at specific sites suppresses HO-1 translation despite high levels of HMOX1 transcription. We also found that eliminating eIF2α O-GlcNAcylation through site-specific mutagenesis improves cell recovery, migration, and reduces ROS accumulation by restoring HO-1 translation. However, the level of the metabolic stress effector ATF4 is not affected by eIF2α O-GlcNAcylation under these conditions. CONCLUSIONS: Overall, this study provides new insights into how ArgS fine-tunes the control of translation initiation and antioxidant defense through eIF2α O-GlcNAcylation, which has potential biological and clinical implications.


Asunto(s)
Arginina , Factor 2 Eucariótico de Iniciación , Hemo-Oxigenasa 1 , Antioxidantes , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Hemo-Oxigenasa 1/genética , Homeostasis , Especies Reactivas de Oxígeno/metabolismo , Humanos
3.
Proc Natl Acad Sci U S A ; 117(40): 24859-24866, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32958674

RESUMEN

Targeted treatments for advanced gastric cancer (GC) are needed, particularly for HER2-negative GC, which represents the majority of cases (80 to 88%). In this study, in silico analyses of the lysine histone demethylases (KDMs) involved in diverse biological processes and diseases revealed that PHD finger protein 8 (PHF8, KDM7B) was significantly associated with poor clinical outcome in HER2-negative GC. The depletion of PHF8 significantly reduced cancer progression in GC cells and in mouse xenografts. PHF8 regulated genes involved in cell migration/motility based on a microarray analysis. Of note, PHF8 interacted with c-Jun on the promoter of PRKCA which encodes PKCα. The depletion of PHF8 or PKCα greatly up-regulated PTEN expression, which could be rescued by ectopic expression of a PKCα expression vector or an active Src. These suggest that PTEN destabilization occurs mainly via the PKCα-Src axis. GC cells treated with midostaurin or bosutinib significantly suppressed migration in vitro and in zebrafish models. Immunohistochemical analyses of PHF8, PKCα, and PTEN showed a positive correlation between PHF8 and PKCα but negative correlations between PHF8 and PTEN and between PKCα and PTEN. Moreover, high PHF8-PKCα expression was significantly correlated with worse prognosis. Together, our results suggest that the PKCα-Src-PTEN pathway regulated by PHF8/c-Jun is a potential prognostic/therapeutic target in HER2-negative advanced GC.


Asunto(s)
Histona Demetilasas/metabolismo , Proteína Quinasa C-alfa/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Neoplasias Gástricas/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas/genética , Humanos , Ratones , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Proteína Quinasa C-alfa/genética , Proteínas Proto-Oncogénicas pp60(c-src)/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/fisiopatología , Factores de Transcripción/genética
4.
J Biomed Sci ; 29(1): 29, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534851

RESUMEN

BACKGROUND: Castration-resistant prostate cancer (CRPC) with sustained androgen receptor (AR) signaling remains a critical clinical challenge, despite androgen depletion therapy. The Jumonji C-containing histone lysine demethylase family 4 (KDM4) members, KDM4A‒KDM4C, serve as critical coactivators of AR to promote tumor growth in prostate cancer and are candidate therapeutic targets to overcome AR mutations/alterations-mediated resistance in CRPC. METHODS: In this study, using a structure-based approach, we identified a natural product, myricetin, able to block the demethylation of histone 3 lysine 9 trimethylation by KDM4 members and evaluated its effects on CRPC. A structure-based screening was employed to search for a natural product that inhibited KDM4B. Inhibition kinetics of myricetin was determined. The cytotoxic effect of myricetin on various prostate cancer cells was evaluated. The combined effect of myricetin with enzalutamide, a second-generation AR inhibitor toward C4-2B, a CRPC cell line, was assessed. To improve bioavailability, myricetin encapsulated by poly lactic-co-glycolic acid (PLGA), the US food and drug administration (FDA)-approved material as drug carriers, was synthesized and its antitumor activity alone or with enzalutamide was evaluated using in vivo C4-2B xenografts. RESULTS: Myricetin was identified as a potent α-ketoglutarate-type inhibitor that blocks the demethylation activity by KDM4s and significantly reduced the proliferation of both androgen-dependent (LNCaP) and androgen-independent CRPC (CWR22Rv1 and C4-2B). A synergistic cytotoxic effect toward C4-2B was detected for the combination of myricetin and enzalutamide. PLGA-myricetin, enzalutamide, and the combined treatment showed significantly greater antitumor activity than that of the control group in the C4-2B xenograft model. Tumor growth was significantly lower for the combination treatment than for enzalutamide or myricetin treatment alone. CONCLUSIONS: These results suggest that myricetin is a pan-KDM4 inhibitor and exhibited potent cell cytotoxicity toward CRPC cells. Importantly, the combination of PLGA-encapsulated myricetin with enzalutamide is potentially effective for CRPC.


Asunto(s)
Antineoplásicos , Productos Biológicos , Flavonoides , Neoplasias de la Próstata Resistentes a la Castración , Andrógenos/farmacología , Andrógenos/uso terapéutico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos , Flavonoides/farmacología , Glicolatos , Glicoles/farmacología , Glicoles/uso terapéutico , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/farmacología , Masculino , Nitrilos/farmacología , Nitrilos/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Receptores Androgénicos/uso terapéutico
5.
EMBO Rep ; 20(10): e45986, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31468690

RESUMEN

Hydrogen sulfide (H2 S), an endogenous signaling gaseous molecule, is involved in various physiological activities, including vessel relaxation, regulation of cellular bioenergetics, inflammation, and angiogenesis. By using xenograft orthotopic implantation of prostate cancer PC3 cells and subsequently comparing bone metastatic with primary tumor-derived cancer cells, we find that H2 S-producing enzyme cystathionine γ-lyase (CTH) is upregulated in bone-metastatic PC3 cells. Clinical data further reveal that the expression of CTH is elevated in late-stage prostate cancer patients, and higher CTH expression correlates with poor survival from The Cancer Genome Atlas (TCGA) prostate cancer RNA-seq datasets. CTH promotes NF-κB nuclear translocation through H2 S-mediated sulfhydration on cysteine-38 of the NF-κB p65 subunit, resulting in increased IL-1ß expression and H2 S-induced cell invasion. Knockdown of CTH in PC3 cells results in the suppression of tumor growth and distant metastasis, while overexpression of CTH in DU145 cells promotes primary tumor growth and lymph node metastasis in the orthotopic implanted xenograft mouse model. Together, our findings provide evidence that CTH generated H2 S promotes prostate cancer progression and metastasis through IL-1ß/NF-κB signaling pathways.


Asunto(s)
Cistationina gamma-Liasa/metabolismo , Progresión de la Enfermedad , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/patología , Animales , Neoplasias Óseas/secundario , Línea Celular Tumoral , Movimiento Celular , Núcleo Celular/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Sulfuro de Hidrógeno/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Metástasis Linfática/patología , Masculino , Ratones Desnudos , Modelos Biológicos , FN-kappa B/metabolismo , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias de la Próstata/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Análisis de Supervivencia , Regulación hacia Arriba/genética , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Int J Mol Sci ; 22(9)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34063159

RESUMEN

Oral cancer is one of the leading malignant tumors worldwide. Despite the advent of multidisciplinary approaches, the overall prognosis of patients with oral cancer is poor, mainly due to late diagnosis. There is an urgent need to develop valid biomarkers for early detection and effective therapies. Long non-coding RNAs (lncRNAs) are recognized as key elements of gene regulation, with pivotal roles in various physiological and pathological processes, including cancer. Over the past few years, an exponentially growing number of lncRNAs have been identified and linked to tumorigenesis and prognosis outcomes in oral cancer, illustrating their emerging roles in oral cancer progression and the associated signaling pathways. Herein, we aim to summarize the most recent advances made concerning oral cancer-associated lncRNA, and their expression, involvement, and potential clinical impact, reported to date, with a specific focus on the lncRNA-mediated molecular regulation in oncogenic signaling cascades and oral malignant progression, while exploring their potential, and challenges, for clinical applications as biomarkers or therapeutic targets for oral cancer.


Asunto(s)
Neoplasias de la Boca/genética , ARN Largo no Codificante/genética , Investigación Biomédica Traslacional , Animales , Biomarcadores de Tumor/genética , Carcinogénesis/genética , Carcinogénesis/patología , Progresión de la Enfermedad , Humanos , Neoplasias de la Boca/patología
7.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34948229

RESUMEN

Increasing evidence suggests that tumor development requires not only oncogene/tumor suppressor mutations to drive the growth, survival, and metastasis but also metabolic adaptations to meet the increasing energy demand for rapid cellular expansion and to cope with the often nutritional and oxygen-deprived microenvironment. One well-recognized strategy is to shift the metabolic flow from oxidative phosphorylation (OXPHOS) or respiration in mitochondria to glycolysis or fermentation in cytosol, known as Warburg effects. However, not all cancer cells follow this paradigm. In the development of prostate cancer, OXPHOS actually increases as compared to normal prostate tissue. This is because normal prostate epithelial cells divert citrate in mitochondria for the TCA cycle to the cytosol for secretion into seminal fluid. The sustained level of OXPHOS in primary tumors persists in progression to an advanced stage. As such, targeting OXPHOS and mitochondrial activities in general present therapeutic opportunities. In this review, we summarize the recent findings of the key regulators of the OXPHOS pathway in prostate cancer, ranging from transcriptional regulation, metabolic regulation to genetic regulation. Moreover, we provided a comprehensive update of the current status of OXPHOS inhibitors for prostate cancer therapy. A challenge of developing OXPHOS inhibitors is to selectively target cancer mitochondria and spare normal counterparts, which is also discussed.


Asunto(s)
Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos , Mitocondrias , Fosforilación Oxidativa/efectos de los fármacos , Neoplasias de la Próstata , Transducción de Señal , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genética , Humanos , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
8.
J Biomed Sci ; 27(1): 59, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32370770

RESUMEN

Over the past few years, long non-coding RNAs (lncRNAs) are recognized as key regulators of gene expression at chromatin, transcriptional and posttranscriptional level with pivotal roles in various biological and pathological processes, including cancer. Hypoxia, a common feature of the tumor microenvironment, profoundly affects gene expression and is tightly associated with cancer progression. Upon tumor hypoxia, the central regulator HIF (hypoxia-inducible factor) is upregulated and orchestrates transcription reprogramming, contributing to aggressive phenotypes in numerous cancers. Not surprisingly, lncRNAs are also transcriptional targets of HIF and serve as effectors of hypoxia response. Indeed, the number of hypoxia-associated lncRNAs (HALs) identified has risen sharply, illustrating the expanding roles of lncRNAs in hypoxia signaling cascade and responses. Moreover, through extra-cellular vesicles, lncRNAs could transmit hypoxia responses between cancer cells and the associated microenvironment. Notably, the aberrantly expressed cellular or exosomal HALs can serve as potential prognostic markers and therapeutic targets. In this review, we provide an update of the current knowledge about the expression, involvement and potential clinical impact of lncRNAs in tumor hypoxia, with special focus on their unique molecular regulation of HIF cascade and hypoxia-induced malignant progression.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/fisiología , ARN Largo no Codificante/genética , Transducción de Señal , Hipoxia Tumoral/genética , Microambiente Tumoral/fisiología , ARN Largo no Codificante/metabolismo
9.
Proc Natl Acad Sci U S A ; 113(28): 7876-81, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27342859

RESUMEN

Viruses depend upon the host cell for manufacturing components of progeny virions. To mitigate the inextricable dependence on host cell protein synthesis, viruses can modulate protein synthesis through a variety of mechanisms. We report that the viral protein kinase (vPK) encoded by open reading frame 36 (ORF36) of Kaposi's sarcoma-associated herpesvirus (KSHV) enhances protein synthesis by mimicking the function of the cellular protein S6 kinase (S6KB1). Similar to S6KB1, vPK phosphorylates the ribosomal S6 protein and up-regulates global protein synthesis. vPK also augments cellular proliferation and anchorage-independent growth. Furthermore, we report that both vPK and S6KB1 phosphorylate the enzyme 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 2 (PFKFB2) and that both kinases promote endothelial capillary tubule formation.


Asunto(s)
Herpesvirus Humano 8/enzimología , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Virales/metabolismo , Simulación por Computador , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Modelos Moleculares , Proteínas Quinasas S6 Ribosómicas 70-kDa/química , Especificidad por Sustrato , Proteínas Virales/química
10.
J Biomed Sci ; 24(1): 53, 2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28789687

RESUMEN

Hypoxia is a classic feature of the tumor microenvironment with a profound impact on cancer progression and therapeutic response. Activation of complex hypoxia pathways orchestrated by the transcription factor HIF (hypoxia-inducible factor) contributes to aggressive phenotypes and metastasis in numerous cancers. Over the past few decades, exponentially growing research indicated the importance of the non-coding genome in hypoxic tumor regions. Recently, key roles of long non coding RNAs (lncRNAs) in hypoxia-driven cancer progression have begun to emerge. These hypoxia-responsive lncRNAs (HRLs) play pivotal roles in regulating hypoxic gene expression at chromatic, transcriptional, and post-transcriptional levels by acting as effectors of the indirect response to HIF or direct modulators of the HIF-transcriptional cascade. Notably, the aberrant expression of HRLs significantly correlates with poor outcomes in cancer patients, showing promise for future utility as a tumor marker or therapeutic target. Here we address the latest advances made toward understanding the functional relevance of HRLs, the involvement of these transcripts in hypoxia response and the underlying action mechanisms, highlighting their specific roles in HIF-1 signaling regulation and hypoxia-associated malignant transformation.


Asunto(s)
Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica/genética , ARN Largo no Codificante/genética , Animales , Humanos , ARN Largo no Codificante/metabolismo , Transducción de Señal , Hipoxia Tumoral/genética , Microambiente Tumoral
11.
Proc Natl Acad Sci U S A ; 111(52): 18697-702, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25512540

RESUMEN

Long noncoding RNAs (lncRNAs) have been implicated in a variety of physiological and pathological processes, including cancer. In prostate cancer, prostate cancer gene expression marker 1 (PCGEM1) is an androgen-induced prostate-specific lncRNA whose overexpression is highly associated with prostate tumors. PCGEM1's tumorigenic potential has been recently shown to be in part due to its ability to activate androgen receptor (AR). Here, we report a novel function of PCGEM1 that provides growth advantages for cancer cells by regulating tumor metabolism via c-Myc activation. PCGEM1 promotes glucose uptake for aerobic glycolysis, coupling with the pentose phosphate shunt to facilitate biosynthesis of nucleotide and lipid, and generates NADPH for redox homeostasis. We show that PCGEM1 regulates metabolism at a transcriptional level that affects multiple metabolic pathways, including glucose and glutamine metabolism, the pentose phosphate pathway, nucleotide and fatty acid biosynthesis, and the tricarboxylic acid cycle. The PCGEM1-mediated gene regulation takes place in part through AR activation, but predominantly through c-Myc activation, regardless of hormone or AR status. Significantly, PCGEM1 binds directly to target promoters, physically interacts with c-Myc, promotes chromatin recruitment of c-Myc, and enhances its transactivation activity. We also identified a c-Myc binding domain on PCGEM1 that contributes to the PCGEM1-dependent c-Myc activation and target induction. Together, our data uncover PCGEM1 as a key transcriptional regulator of central metabolic pathways in prostate cancer cells. By being a coactivator for both c-Myc and AR, PCGEM1 reprograms the androgen network and the central metabolism in a tumor-specific way, making it a promising target for therapeutic intervention.


Asunto(s)
Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Largo no Codificante/metabolismo , ARN Neoplásico/metabolismo , Aerobiosis/genética , Línea Celular Tumoral , Glucólisis/genética , Células HEK293 , Humanos , Masculino , NADP/genética , NADP/metabolismo , Vía de Pentosa Fosfato/genética , Regiones Promotoras Genéticas , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-myc/genética , ARN Largo no Codificante/genética , ARN Neoplásico/genética , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
12.
Proc Natl Acad Sci U S A ; 111(39): 14147-52, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25122679

RESUMEN

Autophagy is the principal catabolic prosurvival pathway during nutritional starvation. However, excessive autophagy could be cytotoxic, contributing to cell death, but its mechanism remains elusive. Arginine starvation has emerged as a potential therapy for several types of cancers, owing to their tumor-selective deficiency of the arginine metabolism. We demonstrated here that arginine depletion by arginine deiminase induces a cytotoxic autophagy in argininosuccinate synthetase (ASS1)-deficient prostate cancer cells. Advanced microscopic analyses of arginine-deprived dying cells revealed a novel phenotype with giant autophagosome formation, nucleus membrane rupture, and histone-associated DNA leakage encaptured by autophagosomes, which we shall refer to as chromatin autophagy, or chromatophagy. In addition, nuclear inner membrane (lamin A/C) underwent localized rearrangement and outer membrane (NUP98) partially fused with autophagosome membrane. Further analysis showed that prolonged arginine depletion impaired mitochondrial oxidative phosphorylation function and depolarized mitochondrial membrane potential. Thus, reactive oxygen species (ROS) production significantly increased in both cytosolic and mitochondrial fractions, presumably leading to DNA damage accumulation. Addition of ROS scavenger N-acetyl cysteine or knockdown of ATG5 or BECLIN1 attenuated the chromatophagy phenotype. Our data uncover an atypical autophagy-related death pathway and suggest that mitochondrial damage is central to linking arginine starvation and chromatophagy in two distinct cellular compartments.


Asunto(s)
Arginina/metabolismo , Muerte Celular/fisiología , ADN de Neoplasias/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Antineoplásicos/farmacología , Arginina/deficiencia , Argininosuccinato Sintasa/metabolismo , Autofagia/efectos de los fármacos , Autofagia/fisiología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Cromatina/efectos de los fármacos , Cromatina/metabolismo , Humanos , Hidrolasas/farmacología , Masculino , Potencial de la Membrana Mitocondrial , Microscopía Electrónica de Transmisión , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Membrana Nuclear/efectos de los fármacos , Membrana Nuclear/ultraestructura , Polietilenglicoles/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo
13.
Proc Natl Acad Sci U S A ; 111(1): 279-84, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24344305

RESUMEN

JMJD5, a Jumonji C domain-containing dioxygenase, is important for embryonic development and cancer growth. Here, we show that JMJD5 is up-regulated by hypoxia and is crucial for hypoxia-induced cell proliferation. JMJD5 interacts directly with pyruvate kinase muscle isozyme (PKM)2 to modulate metabolic flux in cancer cells. The JMJD5-PKM2 interaction resides at the intersubunit interface region of PKM2, which hinders PKM2 tetramerization and blocks pyruvate kinase activity. This interaction also influences translocation of PKM2 into the nucleus and promotes hypoxia-inducible factor (HIF)-1α-mediated transactivation. JMJD5 knockdown inhibits the transcription of the PKM2-HIF-1α target genes involved in glucose metabolism, resulting in a reduction of glucose uptake and lactate secretion in cancer cells. JMJD5, along with PKM2 and HIF-1α, is recruited to the hypoxia response element site in the lactate dehydrogenase A and PKM2 loci and mediates the recruitment of the latter two proteins. Our data uncover a mechanism whereby PKM2 can be regulated by factor-binding-induced homo/heterooligomeric restructuring, paving the way to cell metabolic reprogram.


Asunto(s)
Proteínas Portadoras/metabolismo , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Histona Demetilasas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas de la Membrana/metabolismo , Hormonas Tiroideas/metabolismo , Transporte Activo de Núcleo Celular , Sitio Alostérico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular , Femenino , Glucólisis , Células HEK293 , Células HeLa , Humanos , Hipoxia , Isoenzimas/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Lactato Deshidrogenasa 5 , Ácido Láctico/metabolismo , Células MCF-7 , Neoplasias/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Activación Transcripcional , Proteínas de Unión a Hormona Tiroide
14.
J Virol ; 88(3): 1843-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24257619

RESUMEN

Latent Kaposi's sarcoma-associated herpesvirus (KSHV) episomes are coated with viral latency-associated nuclear antigen (LANA). In contrast, LANA rapidly disassociates from episomes during reactivation. Lytic KSHV expresses polyadenylated nuclear RNA (PAN RNA), a long noncoding RNA (lncRNA). We report that PAN RNA promotes LANA-episome disassociation through an interaction with LANA which facilitates LANA sequestration away from KSHV episomes during reactivation. These findings suggest that KSHV may have evolved an RNA aptamer to regulate latent protein function.


Asunto(s)
Antígenos Virales/metabolismo , Infecciones por Herpesviridae/virología , Herpesvirus Humano 8/fisiología , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/metabolismo , ARN Viral/metabolismo , Antígenos Virales/genética , Herpesvirus Humano 8/genética , Humanos , Proteínas Nucleares/genética , ARN Largo no Codificante/genética , ARN Viral/genética , Activación Viral
15.
PLoS Pathog ; 9(12): e1003813, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24367262

RESUMEN

The establishment of latency is an essential step for the life-long persistent infection and pathogenesis of Kaposi's sarcoma-associated herpesvirus (KSHV). While the KSHV genome is chromatin-free in the virions, the viral DNA in latently infected cells has a chromatin structure with activating and repressive histone modifications that promote latent gene expression but suppress lytic gene expression. Here, we report a comprehensive epigenetic study of the recruitment of chromatin regulatory factors onto the KSHV genome during the pre-latency phase of KSHV infection. This demonstrates that the KSHV genome undergoes a biphasic chromatinization following de novo infection. Initially, a transcriptionally active chromatin (euchromatin), characterized by high levels of the H3K4me3 and acetylated H3K27 (H3K27ac) activating histone marks, was deposited on the viral episome and accompanied by the transient induction of a limited number of lytic genes. Interestingly, temporary expression of the RTA protein facilitated the increase of H3K4me3 and H3K27ac occupancy on the KSHV episome during de novo infection. Between 24-72 hours post-infection, as the levels of these activating histone marks declined on the KSHV genome, the levels of the repressive H3K27me3 and H2AK119ub histone marks increased concomitantly with the decline of lytic gene expression. Importantly, this transition to heterochromatin was dependent on both Polycomb Repressive Complex 1 and 2. In contrast, upon infection of human gingiva-derived epithelial cells, the KSHV genome underwent a transcription-active euchromatinization, resulting in efficient lytic gene expression. Our data demonstrate that the KSHV genome undergoes a temporally-ordered biphasic euchromatin-to-heterochromatin transition in endothelial cells, leading to latent infection, whereas KSHV preferentially adopts a transcriptionally active euchromatin in oral epithelial cells, resulting in lytic gene expression. Our results suggest that the differential epigenetic modification of the KSHV genome in distinct cell types is a potential determining factor for latent infection versus lytic replication of KSHV.


Asunto(s)
Eucromatina/genética , Genoma Viral , Infecciones por Herpesviridae/genética , Herpesvirus Humano 8/genética , Heterocromatina/genética , Latencia del Virus/genética , Células Cultivadas , Ensamble y Desensamble de Cromatina/fisiología , Regulación Viral de la Expresión Génica , Células HEK293 , Infecciones por Herpesviridae/virología , Histonas/metabolismo , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
16.
PLoS Pathog ; 9(8): e1003506, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23990779

RESUMEN

The small ubiquitin-like modifier (SUMO) is a protein that regulates a wide variety of cellular processes by covalent attachment of SUMO moieties to a diverse array of target proteins. Sumoylation also plays an important role in the replication of many viruses. Previously, we showed that Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a SUMO-ligase, K-bZIP, which catalyzes sumoylation of host and viral proteins. We report here that this virus also encodes a gene that functions as a SUMO-targeting ubiquitin-ligase (STUbL) which preferentially targets sumoylated proteins for degradation. K-Rta, the major transcriptional factor which turns on the entire lytic cycle, was recently found to have ubiquitin ligase activity toward a selected set of substrates. We show in this study that K-Rta contains multiple SIMs (SUMO interacting motif) and binds SUMOs with higher affinity toward SUMO-multimers. Like RNF4, the prototypic cellular STUbL, K-Rta degrades SUMO-2/3 and SUMO-2/3 modified proteins, including promyelocytic leukemia (PML) and K-bZIP. PML-NBs (nuclear bodies) or ND-10 are storage warehouses for sumoylated proteins, which negatively regulate herpesvirus infection, as part of the intrinsic immune response. Herpesviruses have evolved different ways to degrade or disperse PML bodies, and KSHV utilizes K-Rta to inhibit PML-NBs formation. This process depends on K-Rta's ability to bind SUMO, as a K-Rta SIM mutant does not effectively degrade PML. Mutations in the K-Rta Ring finger-like domain or SIM significantly inhibited K-Rta transactivation activity in reporter assays and in the course of viral reactivation. Finally, KSHV with a mutation in the Ring finger-like domain or SIM of K-Rta replicates poorly in culture, indicating that reducing SUMO-conjugates in host cells is important for viral replication. To our knowledge, this is the first virus which encodes both a SUMO ligase and a SUMO-targeting ubiquitin ligase that together may generate unique gene regulatory programs.


Asunto(s)
Herpesvirus Humano 8/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Transactivadores/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo , Replicación Viral/fisiología , Secuencias de Aminoácidos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Células HEK293 , Infecciones por Herpesviridae/enzimología , Infecciones por Herpesviridae/genética , Humanos , Proteínas Inmediatas-Precoces/genética , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína de la Leucemia Promielocítica , Estructura Terciaria de Proteína , Proteolisis , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Transactivadores/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinas/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
17.
Int J Mol Sci ; 16(12): 28943-78, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26690121

RESUMEN

Hormone-refractory prostate cancer frequently relapses from therapy and inevitably progresses to a bone-metastatic status with no cure. Understanding of the molecular mechanisms conferring resistance to androgen deprivation therapy has the potential to lead to the discovery of novel therapeutic targets for type of prostate cancer with poor prognosis. Progression to castration-resistant prostate cancer (CRPC) is characterized by aberrant androgen receptor (AR) expression and persistent AR signaling activity. Alterations in metabolic activity regulated by oncogenic pathways, such as c-Myc, were found to promote prostate cancer growth during the development of CRPC. Non-coding RNAs represent a diverse family of regulatory transcripts that drive tumorigenesis of prostate cancer and various other cancers by their hyperactivity or diminished function. A number of studies have examined differentially expressed non-coding RNAs in each stage of prostate cancer. Herein, we highlight the emerging impacts of microRNAs and long non-coding RNAs linked to reactivation of the AR signaling axis and reprogramming of the cellular metabolism in prostate cancer. The translational implications of non-coding RNA research for developing new biomarkers and therapeutic strategies for CRPC are also discussed.


Asunto(s)
Próstata/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , ARN no Traducido/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal , Animales , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/patología , ARN no Traducido/genética , Receptores Androgénicos/genética
18.
BMC Genomics ; 15 Suppl 1: S1, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24564277

RESUMEN

BACKGROUND: Post-translational modification (PTM) of transcriptional factors and chromatin remodelling proteins is recognized as a major mechanism by which transcriptional regulation occurs. Chromatin immunoprecipitation (ChIP) in combination with high-throughput sequencing (ChIP-seq) is being applied as a gold standard when studying the genome-wide binding sites of transcription factor (TFs). This has greatly improved our understanding of protein-DNA interactions on a genomic-wide scale. However, current ChIP-seq peak calling tools are not sufficiently sensitive and are unable to simultaneously identify post-translational modified TFs based on ChIP-seq analysis; this is largely due to the wide-spread presence of multiple modified TFs. Using SUMO-1 modification as an example; we describe here an improved approach that allows the simultaneous identification of the particular genomic binding regions of all TFs with SUMO-1 modification. RESULTS: Traditional peak calling methods are inadequate when identifying multiple TF binding sites that involve long genomic regions and therefore we designed a ChIP-seq processing pipeline for the detection of peaks via a combinatorial fusion method. Then, we annotate the peaks with known transcription factor binding sites (TFBS) using the Transfac Matrix Database (v7.0), which predicts potential SUMOylated TFs. Next, the peak calling result was further analyzed based on the promoter proximity, TFBS annotation, a literature review, and was validated by ChIP-real-time quantitative PCR (qPCR) and ChIP-reChIP real-time qPCR. The results show clearly that SUMOylated TFs are able to be pinpointed using our pipeline. CONCLUSION: A methodology is presented that analyzes SUMO-1 ChIP-seq patterns and predicts related TFs. Our analysis uses three peak calling tools. The fusion of these different tools increases the precision of the peak calling results. TFBS annotation method is able to predict potential SUMOylated TFs. Here, we offer a new approach that enhances ChIP-seq data analysis and allows the identification of multiple SUMOylated TF binding sites simultaneously, which can then be utilized for other functional PTM binding site prediction in future.


Asunto(s)
Biología Computacional/métodos , Sumoilación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Teorema de Bayes , Sitios de Unión , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina , Genoma Humano , Células HeLa , Humanos , Análisis de Secuencia de ADN
19.
J Virol ; 87(16): 9016-29, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23740999

RESUMEN

Marek's disease (MD) is an economically significant disease in chickens that is caused by the highly oncogenic Marek's disease virus (MDV). A major unanswered question is the mechanism of MDV-induced tumor formation. Meq, a bZIP transcription factor discovered in the 1990s, is critically involved in viral oncogenicity, but only a few of its host target genes have been described, impeding our understanding of MDV-induced tumorigenesis. Using chromatin immunoprecipitation-sequencing (ChIP-seq) and microarray analysis, a high-confidence list of Meq binding sites in the chicken genome and a global transcriptome of Meq-responsive genes were generated. Meq binding sites were found to be enriched in the promoter regions of upregulated genes but not in those of downregulated genes. ChIP-seq was also performed for c-Jun, a known heterodimeric partner of Meq. The close location of binding sites of Meq and c-Jun was noted, suggesting cooperativity between these two factors in modulating transcription. Pathway analysis indicated that Meq transcriptionally regulates many genes that are part of several signaling pathways including the extracellular signal-regulated kinase /mitogen-activated protein kinase (ERK/MAPK), Jak-STAT, and ErbB pathways, which are critical for oncogenesis and/or include signaling mediators involved in apoptosis. Meq activates oncogenic signaling cascades by transcriptionally activating major kinases in the ERK/MAPK pathway and simultaneously repressing phosphatases, as verified using inhibitors of MEK and ERK1/2 in a cell proliferation assay. This study provides significant insights into the mechanistic basis of Meq-dependent cell transformation.


Asunto(s)
Transformación Celular Viral , Interacciones Huésped-Patógeno , Mardivirus/patogenicidad , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Animales , Sitios de Unión , Línea Celular , Pollos , Inmunoprecipitación de Cromatina , ADN/metabolismo , Perfilación de la Expresión Génica , Análisis por Micromatrices , Regiones Promotoras Genéticas , Unión Proteica , Análisis de Secuencia de ADN , Transducción de Señal , Transcripción Genética
20.
J Virol ; 87(12): 6782-93, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23576503

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) latent genomes are tethered to host histones to form a minichromosome also known as an "episome." Histones, which are core components of chromatin, are heavily modified by various histone-targeting enzymes. Posttranslational modifications of histones significantly influence accessibility of transcriptional factors and thus have profound effects on gene expression. Recent studies showed that epigenetic marks on the KSHV episome are well organized, exemplified by the absence of histone H3 lysine 9 (H3K9) methylation, a heterochromatic histone mark, from immediate early and latent gene promoters in naturally infected cells. The present study revealed a mechanistic insight into KSHV epigenome regulation via a complex consisting of LANA and the H3K9me1/2 histone demethylase JMJD1A/KDM3A. This complex was isolated from HeLa cell nuclear extracts stably expressing LANA and was verified by coimmunoprecipitation analyses and with purified proteins. LANA recruitment sites on the KSHV genome inversely correlated with H3K9me2 histone marks in naturally infected cells, and methylation of H3K9 significantly inhibited LANA binding to the histone H3 tail. Chromatin immunoprecipitation coupled with KSHV tiling arrays identified the recruitment sites of the complex, while depletion of LANA expression or overexpression of a KDM3A binding-deficient mutant decreased KDM3A recruitment to the KSHV genome. Finally, ablation of KDM3A expression from latently KSHV-infected cells significantly inhibited KSHV gene expression, leading to decreased KSHV replication during reactivation. Taken together, our results suggest that LANA may play a role in regulation of epigenetic marks on the KSHV genome, which is in part through association with the histone demethylase KDM3A.


Asunto(s)
Antígenos Virales/metabolismo , Epigénesis Genética , Regulación Viral de la Expresión Génica/genética , Genoma Viral , Herpesvirus Humano 8/fisiología , Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteínas Nucleares/metabolismo , Antígenos Virales/genética , Inmunoprecipitación de Cromatina , Replicación del ADN , Células HEK293 , Células HeLa , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Histonas/genética , Histonas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Proteínas Nucleares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Latencia del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA