Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 41(4): e108290, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35028974

RESUMEN

Nucleotide metabolism fuels normal DNA replication and is also primarily targeted by the DNA replication checkpoint when replication stalls. To reveal a comprehensive interconnection between genome maintenance and metabolism, we analyzed the metabolomic changes upon replication stress in the budding yeast S. cerevisiae. We found that upon treatment of cells with hydroxyurea, glucose is rapidly diverted to the oxidative pentose phosphate pathway (PPP). This effect is mediated by the AMP-dependent kinase, SNF1, which phosphorylates the transcription factor Mig1, thereby relieving repression of the gene encoding the rate-limiting enzyme of the PPP. Surprisingly, NADPH produced by the PPP is required for efficient recruitment of replication protein A (RPA) to single-stranded DNA, providing the signal for the activation of the Mec1/ATR-Rad53/CHK1 checkpoint signaling kinase cascade. Thus, SNF1, best known as a central energy controller, determines a fast mode of replication checkpoint activation through a redox mechanism. These findings establish that SNF1 provides a hub with direct links to cellular metabolism, redox, and surveillance of DNA replication in eukaryotes.


Asunto(s)
Replicación del ADN , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Replicación del ADN/efectos de los fármacos , ADN de Cadena Simple/metabolismo , Glucosa/genética , Glucosa/metabolismo , Glucólisis/fisiología , Hidroxiurea , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , NADP/metabolismo , Vía de Pentosa Fosfato , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Nature ; 573(7774): 416-420, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31511699

RESUMEN

Despite major progress in defining the functional roles of genes, a complete understanding of their influences is far from being realized, even in relatively simple organisms. A major milestone in this direction arose via the completion of the yeast Saccharomyces cerevisiae gene-knockout collection (YKOC), which has enabled high-throughput reverse genetics, phenotypic screenings and analyses of synthetic-genetic interactions1-3. Ensuing experimental work has also highlighted some inconsistencies and mistakes in the YKOC, or genome instability events that rebalance the effects of specific knockouts4-6, but a complete overview of these is lacking. The identification and analysis of genes that are required for maintaining genomic stability have traditionally relied on reporter assays and on the study of deletions of individual genes, but whole-genome-sequencing technologies now enable-in principle-the direct observation of genome instability globally and at scale. To exploit this opportunity, we sequenced the whole genomes of nearly all of the 4,732 strains comprising the homozygous diploid YKOC. Here, by extracting information on copy-number variation of tandem and interspersed repetitive DNA elements, we describe-for almost every single non-essential gene-the genomic alterations that are induced by its loss. Analysis of this dataset reveals genes that affect the maintenance of various genomic elements, highlights cross-talks between nuclear and mitochondrial genome stability, and shows how strains have genetically adapted to life in the absence of individual non-essential genes.


Asunto(s)
Genoma Fúngico/genética , Inestabilidad Genómica , Saccharomyces cerevisiae/genética , Adaptación Biológica/genética , Técnicas de Inactivación de Genes , Genoma Mitocondrial/genética , Secuenciación Completa del Genoma
3.
Mol Cell ; 68(6): 1120-1133.e3, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29249654

RESUMEN

The ability to respond to available nutrients is critical for all living cells. The AMP-activated protein kinase (SNF1 in yeast) is a central regulator of metabolism that is activated when energy is depleted. We found that SNF1 activity in the nucleus is regulated by controlled relocalization of the SNF1 activator Std1 into puncta. This process is regulated by glucose through the activity of the previously uncharacterized protein kinase Vhs1 and its substrate Sip5, a protein of hitherto unknown function. Phosphorylation of Sip5 prevents its association with Std1 and triggers Std1 accretion. Reversible Std1 puncta formation occurs under non-stressful, ambient conditions, creating non-amyloid inclusion bodies at the nuclear-vacuolar junction, and it utilizes cellular chaperones similarly to the aggregation of toxic or misfolded proteins such as those associated with Parkinson's, Alzheimer's, and CJD diseases. Our results reveal a controlled, non-pathological, physiological role of protein aggregation in the regulation of a major metabolic cellular pathway.


Asunto(s)
Glucosa/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Agregado de Proteínas , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Redes y Vías Metabólicas , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Edulcorantes/farmacología
4.
PLoS Genet ; 18(2): e1010061, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35157728

RESUMEN

The fission yeast TOR complex 2 (TORC2) is required for gene silencing at subtelomeric regions and for the induction of gene transcription in response to DNA replication stress. Thus, TORC2 affects transcription regulation both negatively and positively. Whether these two TORC2-dependent functions share a common molecular mechanism is currently unknown. Here, we show that Gad8 physically interacts with proteins that regulate transcription, including subunits of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex and the BET bromodomain protein Bdf2. We demonstrate that in the absence of TORC2, Gcn5, the histone acetyltransferase subunit of SAGA, accumulates at subtelomeric genes and at non-induced promoters of DNA replication genes. Remarkably, the loss of Gcn5 in TORC2 mutant cells restores gene silencing as well as transcriptional induction in response to DNA replication stress. Loss of Bdf2 alleviates excess of Gcn5 binding in TORC2 mutant cells and also rescues the aberrant regulation of transcription in these cells. Furthermore, the loss of either SAGA or Bdf2 suppresses the sensitivity of TORC2 mutant cells to a variety of stresses, including DNA replication, DNA damage, temperature and nutrient stresses. We suggest a role of TORC2 in transcriptional regulation that is critical for gene silencing and gene induction in response to stress and involves the binding of Gcn5 to the chromatin.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Acetiltransferasas/genética , Replicación del ADN/genética , Proteínas Fúngicas/genética , Heterocromatina/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
5.
PLoS Genet ; 17(2): e1009391, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33600490

RESUMEN

During DNA replication newly synthesized histones are incorporated into the chromatin of the replicating sister chromatids. In the yeast Saccharomyces cerevisiae new histone H3 molecules are acetylated at lysine 56. This modification is carefully regulated during the cell cycle, and any disruption of this process is a source of genomic instability. Here we show that the protein kinase Dun1 is necessary in order to maintain viability in the absence of the histone deacetylases Hst3 and Hst4, which remove the acetyl moiety from histone H3. This lethality is not due to the well-characterized role of Dun1 in upregulating dNTPs, but rather because Dun1 is needed in order to counteract the checkpoint kinase Rad53 (human CHK2) that represses the activity of late firing origins. Deletion of CTF18, encoding the large subunit of an alternative RFC-like complex (RLC), but not of components of the Elg1 or Rad24 RLCs, is enough to overcome the dependency of cells with hyper-acetylated histones on Dun1. We show that the detrimental function of Ctf18 depends on its interaction with the leading strand polymerase, Polε. Our results thus show that the main problem of cells with hyper-acetylated histones is the regulation of their temporal and replication programs, and uncover novel functions for the Dun1 protein kinase and the Ctf18 clamp loader.


Asunto(s)
Proteínas de Ciclo Celular/genética , Histona Desacetilasas/genética , Histonas/genética , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Acetilación , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisina/genética , Lisina/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura
6.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542333

RESUMEN

DNA Damage Tolerance (DDT) mechanisms allow cells to bypass lesions in the DNA during replication. This allows the cells to progress normally through the cell cycle in the face of abnormalities in their DNA. PCNA, a homotrimeric sliding clamp complex, plays a central role in the coordination of various processes during DNA replication, including the choice of mechanism used during DNA damage bypass. Mono-or poly-ubiquitination of PCNA facilitates an error-prone or an error-free bypass mechanism, respectively. In contrast, SUMOylation recruits the Srs2 helicase, which prevents local homologous recombination. The Elg1 RFC-like complex plays an important role in unloading PCNA from the chromatin. We analyze the interaction of mutations that destabilize PCNA with mutations in the Elg1 clamp unloader and the Srs2 helicase. Our results suggest that, in addition to its role as a coordinator of bypass mechanisms, the very presence of PCNA on the chromatin prevents homologous recombination, even in the absence of the Srs2 helicase. Thus, PCNA unloading seems to be a pre-requisite for recombinational repair.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , Recombinación Homóloga , Replicación del ADN , ADN/genética , ADN/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Portadoras/metabolismo
7.
PLoS Genet ; 16(11): e1009196, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33137119

RESUMEN

The Target of rapamycin (TOR) protein kinase forms part of TOR complex 1 (TORC1) and TOR complex 2 (TORC2), two multi-subunit protein complexes that regulate growth, proliferation, survival and developmental processes by phosphorylation and activation of AGC-family kinases. In the fission yeast, Schizosaccharomyces pombe, TORC2 and its target, the AGC kinase Gad8 (an orthologue of human AKT or SGK1) are required for viability under stress conditions and for developmental processes in response to starvation cues. In this study, we describe the isolation of gad8 mutant alleles that bypass the requirement for TORC2 and reveal a separation of function of TORC2 and Gad8 under stress conditions. In particular, osmotic and nutritional stress responses appear to form a separate branch from genotoxic stress responses downstream of TORC2-Gad8. Interestingly, TORC2-independent mutations map into the regulatory PIF pocket of Gad8, a highly conserved motif in AGC kinases that regulates substrate binding in PDK1 (phosphoinositide dependent kinase-1) and kinase activity in several AGC kinases. Gad8 activation is thought to require a two-step mechanism, in which phosphorylation by TORC2 allows further phosphorylation and activation by Ksg1 (an orthologue of PDK1). We focus on the Gad8-K263C mutation and demonstrate that it renders the Gad8 kinase activity independent of TORC2 in vitro and independent of the phosphorylation sites of TORC2 in vivo. Molecular dynamics simulations of Gad8-K263C revealed abnormal high flexibility at T387, the phosphorylation site for Ksg1, suggesting a mechanism for the TORC2-independent Gad8 activity. Significantly, the K263 residue is highly conserved in the family of AGC-kinases, which may suggest a general way of keeping their activity in check when acting downstream of TOR complexes.


Asunto(s)
Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Osmorregulación/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiología , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Sitios de Unión/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Simulación de Dinámica Molecular , Mutación , Fosforilación , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Schizosaccharomyces pombe/genética
8.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674878

RESUMEN

Energy status in all eukaryotic cells is sensed by AMP-kinases. We have previously found that the poly-histidine tract at the N-terminus of S. cerevisiae AMPK (Snf1) inhibits its function in the presence of glucose via a pH-regulated mechanism. We show here that in the absence of glucose, the poly-histidine tract has a second function, linking together carbon and iron metabolism. Under conditions of iron deprivation, when different iron-intense cellular systems compete for this scarce resource, Snf1 is inhibited. The inhibition is via an interaction of the poly-histidine tract with the low-iron transcription factor Aft1. Aft1 inhibition of Snf1 occurs in the nucleus at the nuclear membrane, and only inhibits nuclear Snf1, without affecting cytosolic Snf1 activities. Thus, the temporal and spatial regulation of Snf1 activity enables a differential response to iron depending upon the type of carbon source. The linkage of nuclear Snf1 activity to iron sufficiency ensures that sufficient clusters are available to support respiratory enzymatic activity and tests mitochondrial competency prior to activation of nuclear Snf1.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Fosforilación , Proteínas de Saccharomyces cerevisiae/metabolismo , Carbono/metabolismo , Hierro/metabolismo , Glucosa/metabolismo
9.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675081

RESUMEN

Timely and complete replication of the genome is essential for life. The PCNA ring plays an essential role in DNA replication and repair by contributing to the processivity of DNA polymerases and by recruiting proteins that act in DNA replication-associated processes. The ELG1 gene encodes a protein that works, together with the Rfc2-5 subunits (shared by the replication factor C complex), to unload PCNA from chromatin. While ELG1 is not essential for life, deletion of the gene has strong consequences for the stability of the genome, and elg1 mutants exhibit sensitivity to DNA damaging agents, defects in genomic silencing, high mutation rates, and other striking phenotypes. Here, we sought to understand whether all the roles attributed to Elg1 in genome stability maintenance are due to its effects on PCNA unloading, or whether they are due to additional functions of the protein. By using a battery of mutants that affect PCNA accumulation at various degrees, we show that all the phenotypes measured correlate with the amount of PCNA left at the chromatin. Our results thus demonstrate the importance of Elg1 and of PCNA unloading in promoting proper chromatin structure and in maintaining a stable genome.


Asunto(s)
Replicación del ADN , Proteínas de Saccharomyces cerevisiae , Proteínas Portadoras/metabolismo , Cromatina/genética , Cromatina/metabolismo , ADN/metabolismo , Daño del ADN , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
EMBO J ; 36(4): 425-440, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28069708

RESUMEN

Ubiquitylation controls protein function and degradation. Therefore, ubiquitin ligases need to be tightly controlled. We discovered an evolutionarily conserved allosteric restraint mechanism for Nedd4 ligases and demonstrated its function with diverse substrates: the yeast soluble proteins Rpn10 and Rvs167, and the human receptor tyrosine kinase FGFR1 and cardiac IKS potassium channel. We found that a potential trimerization interface is structurally blocked by the HECT domain α1-helix, which further undergoes ubiquitylation on a conserved lysine residue. Genetic, bioinformatics, biochemical and biophysical data show that attraction between this α1-conjugated ubiquitin and the HECT ubiquitin-binding patch pulls the α1-helix out of the interface, thereby promoting trimerization. Strikingly, trimerization renders the ligase inactive. Arginine substitution of the ubiquitylated lysine impairs this inactivation mechanism and results in unrestrained FGFR1 ubiquitylation in cells. Similarly, electrophysiological data and TIRF microscopy show that NEDD4 unrestrained mutant constitutively downregulates the IKS channel, thus confirming the functional importance of E3-ligase autoinhibition.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Microfilamentos/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Multimerización de Proteína , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Humanos , Proteínas de Microfilamentos/química , Ubiquitina-Proteína Ligasas Nedd4 , Canales de Potasio con Entrada de Voltaje/química , Complejo de la Endopetidasa Proteasomal/química , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/química , Proteínas de Saccharomyces cerevisiae/química
11.
Curr Genet ; 67(4): 501-510, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33715066

RESUMEN

As cells replicate their DNA, there is a need to synthesize new histones with which to wrap it. Newly synthesized H3 histones that are incorporated into the assembling chromatin behind the replication fork are acetylated at lysine 56. The acetylation is removed by two deacetylases, Hst3 and Hst4. This process is tightly regulated and any perturbation leads to genomic instability and replicative stress. We recently showed that Dun1, a kinase implicated mainly in the regulation of dNTPs, is vital in cells with hyper-acetylation, to counteract Rad53's inhibition on late-firing origins of replication. Our work showed that ∆hst3 ∆hst4 cells depend on late origin firing for survival, and are unable to prevent Rad53's inhibition when Dun1 is inactive. Thus, our work describes a role for Dun1 that is independent on its known function as a regulator of dNTP levels. Here we show that Mrc1 (Claspin in mammals), a protein that moves with the replicating fork and participates in both replication and checkpoint functions, plays also an essential role in the absence of H3K56Ac deacetylation. The sum of the results shown here and in our recent publication suggests that dormant origins are also utilized in these cells, making Mrc1, which regulates firing from these origins, also essential when histone H3 is hyper-acetylated. Thus, cells suffering from hyper-acetylation of H3K56 experience replication stress caused by a combination of prone-to-collapse forks and limited replication tracts. This combination makes both Dun1 and Mrc1, each acting on different targets, essential for viability.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2/genética , Replicación del ADN/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Acetilación , Cromatina/genética , Histona Desacetilasas/genética , Histonas/genética , Humanos , Saccharomyces cerevisiae/genética
12.
Proc Natl Acad Sci U S A ; 115(9): E2030-E2039, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29440488

RESUMEN

In Saccharomyces cerevisiae, heterochromatin structures required for transcriptional silencing of the HML and HMR loci are duplicated in coordination with passing DNA replication forks. Despite major reorganization of chromatin structure, the heterochromatic, transcriptionally silent states of HML and HMR are successfully maintained throughout S-phase. Mutations of specific components of the replisome diminish the capacity to maintain silencing of HML and HMR through replication. Similarly, mutations in histone chaperones involved in replication-coupled nucleosome assembly reduce gene silencing. Bridging these observations, we determined that the proliferating cell nuclear antigen (PCNA) unloading activity of Elg1 was important for coordinating DNA replication forks with the process of replication-coupled nucleosome assembly to maintain silencing of HML and HMR through S-phase. Collectively, these data identified a mechanism by which chromatin reassembly is coordinated with DNA replication to maintain silencing through S-phase.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Heterocromatina/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/metabolismo , Replicación del ADN , Eliminación de Gen , Silenciador del Gen , Genoma Fúngico , Histonas/metabolismo , Sistemas de Lectura Abierta , Plásmidos/metabolismo , Ribonucleasas/metabolismo , Fase S , Transcripción Genética
13.
J Biol Chem ; 294(48): 18244-18255, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31641022

RESUMEN

The evolutionarily conserved TOR complex 1 (TORC1) activates cell growth and proliferation in response to nutritional signals. In the fission yeast Schizosaccharomyces pombe, TORC1 is essential for vegetative growth, and its activity is regulated in response to nitrogen quantity and quality. Yet, how TORC1 senses nitrogen is poorly understood. Rapamycin, a specific TOR inhibitor, inhibits growth in S. pombe only under conditions in which the activity of TORC1 is compromised. In a genetic screen for rapamycin-sensitive mutations, we isolated caa1-1, a loss-of-function mutation of the cytosolic form of aspartate aminotransferase (Caa1). We demonstrate that loss of caa1+ partially mimics loss of TORC1 activity and that Caa1 is required for full TORC1 activity. Disruption of caa1+ resulted in aspartate auxotrophy, a finding that prompted us to assess the role of aspartate in TORC1 activation. We found that the amino acids glutamine, asparagine, arginine, aspartate, and serine activate TORC1 most efficiently following nitrogen starvation. The glutamine synthetase inhibitor l-methionine sulfoximine abolished the ability of asparagine, arginine, aspartate, or serine, but not that of glutamine, to induce TORC1 activity, consistent with a central role for glutamine in activating TORC1. Neither addition of aspartate nor addition of glutamine restored TORC1 activity in caa1-deleted cells or in cells carrying a Caa1 variant with a catalytic site substitution, suggesting that the catalytic activity of Caa1 is required for TORC1 activation. Taken together, our results reveal the contribution of the key metabolic enzyme Caa1 to TORC1 activity in S. pombe.


Asunto(s)
Aspartato Aminotransferasas/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Mutación , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Arginina/farmacología , Asparagina/farmacología , Aspartato Aminotransferasas/metabolismo , Ácido Aspártico/farmacología , Citosol/enzimología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Isoenzimas/genética , Isoenzimas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metionina Sulfoximina/farmacología , Nitrógeno/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Sirolimus/farmacología
14.
Curr Genet ; 66(1): 79-84, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31332476

RESUMEN

During cell proliferation, the genome is constantly threatened by cellular and external factors. When the DNA is damaged, or when its faithful duplication is delayed by DNA polymerase stalling, the cells induce a coordinated response termed the DNA damage response (DDR) or checkpoint. Elg1 forms an RFC-like complex in charge of unloading the DNA polymerase processively factor PCNA during DNA replication and DNA repair. Using checkpoint-inducible strains, a recently published paper (Sau et al. in mBio 10(3):e01159-19. https://doi.org/10.1128/mbio.01159-19, 2019) uncovered a role for Elg1 in eliciting the DNA damage checkpoint (DC), one of the branches of the DDR. The apical kinase Mec1/ATR phosphorylates Elg1, as well as the adaptor proteins Rad9/53BP1 and Dpb11/TopBP1, which are recruited to the site of DNA damage to amplify the checkpoint signal. In the absence of Elg1, Rad9 and Dpb11 are recruited but fail to be phosphorylated and the signal is therefore not amplified. Thus, Elg1 appears to coordinate DNA repair and the induction of the DNA damage checkpoint.


Asunto(s)
Proteínas Portadoras/metabolismo , Daño del ADN , Proteínas Fúngicas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Levaduras/genética , Levaduras/metabolismo , Reparación del ADN , Replicación del ADN
15.
Curr Genet ; 66(5): 911-915, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32394094

RESUMEN

DNA polymerases sometimes stall during DNA replication at sites where DNA is damaged, or upon encounter with proteins or secondary structures of DNA. When that happens, the polymerase clamp PCNA can become modified with a single ubiquitin moiety at lysine 164, opening DNA Damage Tolerance (DDT) mechanisms that either repair or bypass the lesions. An alternative repair mechanism is the salvage recombination (SR) pathway, which copies information from the sister chromatid. SUMOylation of PCNA at the same lysine, or at lysine 127, can recruit the Srs2 helicase, which negatively controls SR. Recently, we have dissected the relationship between SR and the DDT pathways, and showed that overexpression of either the PCNA unloader Elg1, or the Rad52 homologous recombination protein, can bypass the repression by Srs2. Our results shed light on the interactions between different DNA damage repair/bypass proteins, and underscore the importance of PCNA modifications in organizing the complex task of dealing with DNA damage during replication of the genetic material.


Asunto(s)
Replicación del ADN , ADN de Hongos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Portadoras/metabolismo , Daño del ADN , ADN Helicasas/metabolismo , Reparación del ADN , ADN de Hongos/metabolismo , Recombinación Homóloga , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomyces cerevisiae/metabolismo , Sumoilación
16.
PLoS Genet ; 13(10): e1007082, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29069086

RESUMEN

Ribonucleotide reductase (RNR) provides the precursors for the generation of dNTPs, which are required for DNA synthesis and repair. Here, we investigated the function of the major RNR subunits Rnr1 and Rnr3 in telomere elongation in budding yeast. We show that Rnr1 is essential for the sustained elongation of short telomeres by telomerase. In the absence of Rnr1, cells harbor very short, but functional, telomeres, which cannot become elongated by increased telomerase activity or by tethering of telomerase to telomeres. Furthermore, we demonstrate that Rnr1 function is critical to prevent an early onset of replicative senescence and premature survivor formation in telomerase-negative cells but dispensable for telomere elongation by Homology-Directed-Repair. Our results suggest that telomerase has a "basal activity" mode that is sufficient to compensate for the "end-replication-problem" and does not require the presence of Rnr1 and a different "sustained activity" mode necessary for the elongation of short telomeres, which requires an upregulation of dNTP levels and dGTP ratios specifically through Rnr1 function. By analyzing telomere length and dNTP levels in different mutants showing changes in RNR complex composition and activity we provide evidence that the Mec1ATR checkpoint protein promotes telomere elongation by increasing both dNTP levels and dGTP ratios through Rnr1 upregulation in a mechanism that cannot be replaced by its homolog Rnr3.


Asunto(s)
Ribonucleótido Reductasas/genética , Saccharomycetales/genética , Telomerasa/metabolismo , Homeostasis del Telómero , Telómero , Senescencia Celular , Replicación del ADN , Saccharomycetales/citología , Saccharomycetales/crecimiento & desarrollo , Saccharomycetales/metabolismo , Telomerasa/genética
17.
J Biol Chem ; 293(21): 8138-8150, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29632066

RESUMEN

The conserved serine/threonine protein kinase target of rapamycin (TOR) is a major regulator of eukaryotic cellular and organismal growth and a valuable target for drug therapy. TOR forms the core of two evolutionary conserved complexes, TOR complex 1 (TORC1) and TORC2. In the fission yeast Schizosaccharomyces pombe, TORC2 responds to glucose levels and, by activating the protein kinase Gad8 (an orthologue of human AKT), is required for well-regulated cell cycle progression, starvation responses, and cell survival. Here, we report that TORC2-Gad8 is also required for gene silencing and the formation of heterochromatin at the S. pombe mating-type locus and at subtelomeric regions. Deletion of TORC2-Gad8 resulted in loss of the heterochromatic modification of histone 3 lysine 9 dimethylation (H3K9me2) and an increase in euchromatic modifications, including histone 3 lysine 4 trimethylation (H3K4me3) and histone 4 lysine 16 acetylation (H4K16Ac). Accumulation of RNA polymerase II (Pol II) at subtelomeric genes in TORC2-Gad8 mutant cells indicated a defect in silencing at the transcriptional level. Moreover, a concurrent decrease in histone 4 lysine 20 dimethylation (H4K20me2) suggested elevated histone turnover. Loss of gene silencing in cells lacking TORC2-Gad8 is partially suppressed by loss of the anti-silencer Epe1 and fully suppressed by loss of the Pol II-associated Paf1 complex, two chromatin regulators that have been implicated in heterochromatin stability and spreading. Taken together, our findings suggest that TORC2-Gad8 signaling contributes to epigenetic stability at subtelomeric regions and the mating-type locus in S. pombe.


Asunto(s)
Cromatina/genética , Silenciador del Gen , Heterocromatina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Telómero/genética , Cromatina/metabolismo , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Telómero/metabolismo
18.
Curr Genet ; 65(6): 1321-1323, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31119370

RESUMEN

Most organisms prefer to utilize glucose as a carbon source. Accordingly, the expression of genes involved in the catabolism of other carbon sources is repressed by the presence of glucose in a process known as (carbon) catabolite repression. However, much less is known about the relationships between "poor" carbon sources. We have recently shown that the enzyme alcohol dehydrogenase of the yeast Saccharomyces cerevisiae (ADH2), required for the utilization of ethanol, is not only inhibited by glucose, but by the acetate imported from the medium or produced by ethanol metabolism. Our study showed that sensing of acetate takes place within the cell, and not in the external medium, and that "poor" carbon sources are also utilized according to a pre-established hierarchy.


Asunto(s)
Ácido Acético/metabolismo , Represión Catabólica , Glucosa/metabolismo , Saccharomyces cerevisiae/metabolismo , Alcohol Deshidrogenasa/metabolismo , Etanol/metabolismo , Regulación Fúngica de la Expresión Génica , Glicerol/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
PLoS Comput Biol ; 14(1): e1005951, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29377894

RESUMEN

Ribosome queuing is a fundamental phenomenon suggested to be related to topics such as genome evolution, synthetic biology, gene expression regulation, intracellular biophysics, and more. However, this phenomenon hasn't been quantified yet at a genomic level. Nevertheless, methodologies for studying translation (e.g. ribosome footprints) are usually calibrated to capture only single ribosome protected footprints (mRPFs) and thus limited in their ability to detect ribosome queuing. On the other hand, most of the models in the field assume and analyze a certain level of queuing. Here we present an experimental-computational approach for studying ribosome queuing based on sequencing of RNA footprints extracted from pairs of ribosomes (dRPFs) using a modified ribosome profiling protocol. We combine our approach with traditional ribosome profiling to generate a detailed profile of ribosome traffic. The data are analyzed using computational models of translation dynamics. The approach was implemented on the Saccharomyces cerevisiae transcriptome. Our data shows that ribosome queuing is more frequent than previously thought: the measured ratio of ribosomes within dRPFs to mRPFs is 0.2-0.35, suggesting that at least one to five translating ribosomes is in a traffic jam; these queued ribosomes cannot be captured by traditional methods. We found that specific regions are enriched with queued ribosomes, such as the 5'-end of ORFs, and regions upstream to mRPF peaks, among others. While queuing is related to higher density of ribosomes on the transcript (characteristic of highly translated genes), we report cases where traffic jams are relatively more severe in lowly expressed genes and possibly even selected for. In addition, our analysis demonstrates that higher adaptation of the coding region to the intracellular tRNA levels is associated with lower queuing levels. Our analysis also suggests that the Saccharomyces cerevisiae transcriptome undergoes selection for eliminating traffic jams. Thus, our proposed approach is an essential tool for high resolution analysis of ribosome traffic during mRNA translation and understanding its evolution.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Calibración , Codón , Biología Computacional , Simulación por Computador , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Teóricos , Distribución Normal , Sistemas de Lectura Abierta , Probabilidad , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Análisis de Secuencia de ARN , Programas Informáticos , Transcriptoma
20.
Nucleic Acids Res ; 45(6): 3189-3203, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28108661

RESUMEN

The sliding clamp, PCNA, plays a central role in DNA replication and repair. In the moving replication fork, PCNA is present at the leading strand and at each of the Okazaki fragments that are formed on the lagging strand. PCNA enhances the processivity of the replicative polymerases and provides a landing platform for other proteins and enzymes. The loading of the clamp onto DNA is performed by the Replication Factor C (RFC) complex, whereas its unloading can be carried out by an RFC-like complex containing Elg1. Mutations in ELG1 lead to DNA damage sensitivity and genome instability. To characterize the role of Elg1 in maintaining genomic integrity, we used homology modeling to generate a number of site-specific mutations in ELG1 that exhibit different PCNA unloading capabilities. We show that the sensitivity to DNA damaging agents and hyper-recombination of these alleles correlate with their ability to unload PCNA from the chromatin. Our results indicate that retention of modified and unmodified PCNA on the chromatin causes genomic instability. We also show, using purified proteins, that the Elg1 complex inhibits DNA synthesis by unloading SUMOylated PCNA from the DNA. Additionally, we find that mutations in ELG1 suppress the sensitivity of rad5Δ mutants to DNA damage by allowing trans-lesion synthesis to take place. Taken together, the data indicate that the Elg1-RLC complex plays an important role in the maintenance of genomic stability by unloading PCNA from the chromatin.


Asunto(s)
Proteínas Portadoras/genética , Daño del ADN , Inestabilidad Genómica , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Cromatina/metabolismo , ADN/biosíntesis , ADN Helicasas/genética , Metilmetanosulfonato/toxicidad , Mutación , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/química , Homología Estructural de Proteína , Relación Estructura-Actividad , Supresión Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA