Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Parasit Vectors ; 17(1): 304, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003498

RESUMEN

BACKGROUND: Malaria, a global health concern, is caused by parasites of the Plasmodium genus, which undergo gametogenesis in the midgut of mosquitoes after ingestion of an infected blood meal. The resulting male and female gametes fuse to form a zygote, which differentiates into a motile ookinete. After traversing the midgut epithelium, the ookinete differentiates into an oocyst on the basal side of the epithelium. METHODS: Membrane proteins with increased gene expression levels from the gamete to oocyst stages in P. berghei were investigated utilizing PlasmoDB, the functional genomic database for Plasmodium spp. Based on this analysis, we selected the 184-kDa membrane protein, Pb184, for further study. The expression of Pb184 was further confirmed through immunofluorescence staining, following which we examined whether Pb184 is involved in fertilization using antibodies targeting the C-terminal region of Pb184 and biotin-labeled C-terminal region peptides of Pb184. RESULTS: Pb184 is expressed on the surface of male and female gametes. The antibody inhibited zygote and ookinete formation in vitro. When mosquitoes were fed on parasite-infected blood containing the antibody, oocyst formation decreased on the second day after feeding. Synthesized biotin-labeled peptides matching the C-terminal region of Pb184 bound to the female gamete and the residual body of male gametes, and inhibited differentiation into ookinetes in the in vitro culture system. CONCLUSIONS: These results may be useful for the further studying the fertilization mechanism of Plasmodium protozoa. There is also the potential for their application as future tools to prevent malaria transmission.


Asunto(s)
Fertilización , Plasmodium berghei , Proteínas Protozoarias , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Animales , Femenino , Masculino , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Ratones , Células Germinativas/metabolismo , Malaria/parasitología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Cigoto/metabolismo , Anopheles/parasitología , Anopheles/metabolismo , Oocistos/metabolismo , Gametogénesis/genética
2.
J Vet Med Sci ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39010217

RESUMEN

The bear roundworm Baylisascaris transfuga has been identified in several host bears (Ursinae). However, limited genetic information is available on the bear roundworm in Japanese populations. This study evaluated the genetic composition of bear roundworms isolated from wild Japanese black bears indigenous to Lake Towada, Japan. First, we conducted genetic and/or molecular phylogenetic analyses based on cytochrome c oxidase subunit II and internal transcribed spacer 2 among Baylisascaris species. These analyses revealed that the identified roundworms were genetically B. transfuga. In addition, the average body size of the obtained roundworms in this study was almost the same as that previously reported for B. transfuga. This study represents an important step in genetic research on the roundworm B. transfuga in Ursinae bears not only from Japan but also from the rest of the world.

3.
J Vet Med Sci ; 86(5): 485-492, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38569883

RESUMEN

Plasmodium parasites within mosquitoes are exposed to various physiological processes, such as blood meal digestion activity, the gonotrophic cycle, and host responses preventing the entry of parasites into the midgut wall. However, when in vitro-cultured ookinetes are injected into the hemocoel of mosquitoes, Plasmodium parasites are not affected by the vertebrate host's blood contents and do not pass through the midgut epithelial cells. This infection method might aid in identifying mosquito-derived factors affecting Plasmodium development within mosquitoes. This study investigated novel mosquito-derived molecules related to parasite development in Anopheles mosquitoes. We injected in vitro-cultured Plasmodium berghei (ANKA strain) ookinetes into female and male Anopheles stephensi (STE2 strain) mosquitoes and found that the oocyst number was significantly higher in males than in females, suggesting that male mosquitoes better support the development of parasites. Next, RNA-seq analysis was performed on the injected female and male mosquitoes to identify genes exhibiting changes in expression. Five genes with different expression patterns between sexes and greatest expression changes were identified as being potentially associated with Plasmodium infection. Two of the five genes also showed expression changes with infection by blood-feeding, indicating that these genes could affect the development of Plasmodium parasites in mosquitoes.


Asunto(s)
Anopheles , Plasmodium berghei , Animales , Anopheles/parasitología , Femenino , Masculino , Plasmodium berghei/fisiología , Malaria/parasitología , Mosquitos Vectores/parasitología , Ratones , Interacciones Huésped-Parásitos
4.
Food Waterborne Parasitol ; 34: e00219, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38298421

RESUMEN

Alveolar echinococcosis is a zoonotic disease caused by a larval-stage Echinococcus multilocularis infection. Geographical haplotyping targeting the parasite's mitochondrial cytochrome b (cob) gene has been reported for isolates from definitive and intermediate hosts (wild canids and rodents); however, there are limited reports on strain typing for the dead-end host, the horse, which could act as a sentinel for E. multilocularis. Accordingly, we investigated the diversity of E. multilocularis in isolates obtained from slaughtered Japanese and Canadian horses originating from the Iburi and Hidaka regions in Hokkaido and from Alberta, respectively, with PCR and haplogroup analyses targeting cob gene sequences obtained. Seventy horses were diagnosed with alveolar echinococcosis based on histopathology and cob-gene PCR testing. The E. multilocularis detected in these horses was classified as either an Asian (for Hokkaido-raised horses) or a European (for Alberta-raised horses) haplogroup, based on the obtained cob-gene sequence analysis. In addition, haplotype network analysis revealed that E. multilocularis isolated from Hokkaido-raised horses is highly homologous to Kazakhstan isolates, and E. multilocularis isolated from Alberta-raised horses is highly homologous to Austrian isolates. The results of this study suggest that cob-gene-targeted PCR analysis could be useful for the geographical genetic characterization of E. multilocularis isolated from horses.

5.
Nat Commun ; 15(1): 4278, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778039

RESUMEN

Toxoplasma gondii is a global protozoan pathogen. Clonal lineages predominate in Europe, North America, Africa, and China, whereas highly recombinant parasites are endemic in South/Central America. Far East Asian T. gondii isolates are not included in current global population genetic structure analyses at WGS resolution. Here we report a genome-wide population study that compared eight Japanese and two Chinese isolates against representative worldwide T. gondii genomes using POPSICLE, a novel population structure analyzing software. Also included were 7 genomes resurrected from non-viable isolates by target enrichment sequencing. Visualization of the genome structure by POPSICLE shows a mixture of Chinese haplogroup (HG) 13 haploblocks introgressed within the genomes of Japanese HG2 and North American HG12. Furthermore, two ancestral lineages were identified in the Japanese strains; one lineage shares a common ancestor with HG11 found in both Japanese strains and North American HG12. The other ancestral lineage, found in T. gondii isolates from a small island in Japan, is admixed with genetically diversified South/Central American strains. Taken together, this study suggests multiple ancestral links between Far East Asian and American T. gondii strains and provides insight into the transmission history of this cosmopolitan organism.


Asunto(s)
Genoma de Protozoos , Filogenia , Toxoplasma , Toxoplasma/genética , Toxoplasma/clasificación , Humanos , América del Norte , Genoma de Protozoos/genética , Toxoplasmosis/parasitología , China , América Central , Japón , Haplotipos , Variación Genética , Recombinación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA