Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39026795

RESUMEN

Microbial symbionts associate with multicellular organisms on a continuum from facultative associations to mutual codependency. In some of the oldest intracellular symbioses there is exclusive vertical symbiont transmission, and co-diversification of symbiotic partners over millions of years. Such symbionts often undergo genome reduction due to low effective population sizes, frequent population bottlenecks, and reduced purifying selection. Here, we describe multiple independent acquisition events of closely related defensive symbionts followed by genome erosion in a group of Lagriinae beetles. Previous work in Lagria villosa revealed the dominant genome-eroded symbiont of the genus Burkholderia produces the antifungal compound lagriamide and protects the beetle's eggs and larvae from antagonistic fungi. Here, we use metagenomics to assemble 11 additional genomes of lagriamide-producing symbionts from seven different host species within Lagriinae from five countries, to unravel the evolutionary history of this symbiotic relationship. In each host species, we detected one dominant genome-eroded Burkholderia symbiont encoding the lagriamide biosynthetic gene cluster (BGC). Surprisingly, however, we did not find evidence for host-symbiont co-diversification, or for a monophyly of the lagriamide-producing symbionts. Instead, our analyses support at least four independent acquisition events of lagriamide-encoding symbionts and subsequent genome erosion in each of these lineages. By contrast, a clade of plant-associated relatives retained large genomes but secondarily lost the lagriamide BGC. In conclusion, our results reveal a dynamic evolutionary history with multiple independent symbiont acquisitions characterized by high degree of specificity. They highlight the importance of the specialized metabolite lagriamide for the establishment and maintenance of this defensive symbiosis.

2.
Chem Sci ; 15(21): 8089-8096, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38817573

RESUMEN

Microorganisms from the order Burkholderiales have been the source of a number of important classes of natural products in recent years. For example, study of the beetle-associated symbiont Burkholderia gladioli led to the discovery of the antifungal polyketide lagriamide; an important molecule from the perspectives of both biotechnology and chemical ecology. As part of a wider project to sequence Burkholderiales genomes from our in-house Burkholderiales library we identified a strain containing a biosynthetic gene cluster (BGC) similar to the original lagriamide BGC. Structure prediction failed to identify any candidate masses for the products of this BGC from untargeted metabolomics mass spectrometry data. However, genome mining from publicly available databases identified fragments of this BGC from a culture collection strain of Paraburkholderia. Whole genome sequencing of this strain revealed the presence of a homologue of this BGC with very high sequence identity. Stable isotope feeding of the two strains in parallel using our newly developed IsoAnalyst platform identified the product of this lagriamide-like BGC directly from the crude fermentation extracts, affording a culturable supply of this interesting compound class. Using a combination of bioinformatic, computational and spectroscopic methods we defined the absolute configurations for all 11 chiral centers in this new metabolite, which we named lagriamide B. Biological testing of lagriamide B against a panel of 21 bacterial and fungal pathogens revealed antifungal activity against the opportunistic human pathogen Aspergillus niger, while image-based Cell Painting analysis indicated that lagriamide B also causes actin filament disruption in U2-OS osteosarcoma cells.

3.
PLoS One ; 19(5): e0303273, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38781236

RESUMEN

Lithified layers of complex microbial mats known as microbialites are ubiquitous in the fossil record, and modern forms are increasingly identified globally. A key challenge to developing an understanding of microbialite formation and environmental role is how to investigate complex and diverse communities in situ. We selected living, layered microbialites (stromatolites) in a peritidal environment near Schoenmakerskop, Eastern Cape, South Africa to conduct a spatial survey mapping the composition and small molecule production of the microbial communities from environmental samples. Substrate core samples were collected from nine sampling stations ranging from the upper point of the freshwater inflow to the lower marine interface where tidal overtopping takes place. Substrate cores provided material for parallel analyses of microbial community diversity by 16S rRNA gene amplicon sequencing and metabolomics using LC-MS2. Species and metabolite diversities were correlated, and prominent specialized metabolites were targeted for preliminary characterization. A new series of cyclic hexadepsipeptides, named ibhayipeptolides, was most abundant in substrate cores of submerged microbialites. These results demonstrate the detection and identification of metabolites from mass-limited environmental samples and contribute knowledge about microbialite chemistry and biology, which facilitates future targeted studies of specialized metabolite function and biosynthesis.


Asunto(s)
Metabolómica , Metabolómica/métodos , Sudáfrica , ARN Ribosómico 16S/genética , Sedimentos Geológicos/microbiología , Depsipéptidos/biosíntesis , Depsipéptidos/química , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA