Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 54(7): 2084-9, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25581564

RESUMEN

Luminescent pincer-type Pt(II)  complexes supported by C-deprotonated π-extended tridentate RC^N^NR' ligands and pentafluorophenylacetylide ligands show emission quantum yields up to almost unity. Femtosecond time-resolved fluorescence measurements and time-dependent DFT calculations together reveal the dependence of excited-state structural distortions of [Pt(RC^N^NR')(CC-C6 F5 )] on the positional isomers of the tridentate ligand. Pt complexes [Pt(R-C^N^NR')(CC-Ar)] are efficient photocatalysts for visible-light-induced reductive CC bond formation. The [Pt(R-C^N^NR')(CC-C6 F5 )] complexes perform strongly as phosphorescent dopants for green- and red-emitting organic light-emitting diodes (OLEDs) with external quantum efficiency values over 22.1 %. These complexes are also applied in two-photon cellular imaging when incorporated into mesoporous silica nanoparticles (MSNs).

2.
Opt Lett ; 38(14): 2373-5, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23939052

RESUMEN

In this work, organic electroluminescent (EL) devices with double light-emitting layers (EMLs) having stepwise energy levels were designed to improve the EL performance of a red-light-emitting platinum(II) Schiff base complex. A series of devices with single or double EML(s) were fabricated and characterized. Compared with single-EML devices, double-EML devices showed improved EL efficiency and brightness, attributed to better balance in carriers. In addition, the stepwise distribution in energy levels of host materials is instrumental in broadening the recombination zone, thus delaying the roll-off of EL efficiency. The highest EL current efficiency and power efficiency of 17.36 cd/A and 14.73 lm/W, respectively, were achieved with the optimized double-EML devices. At high brightness of 1000 cd/m², EL efficiency as high as 8.89 cd/A was retained.

3.
Chemistry ; 19(1): 69-73, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23239189

RESUMEN

The bright white lights: A series of highly robust platinum(II) complexes supported by tetradentate O N C N ligands with high emission quantum yields (0.72-0.93) and high T(d) (>400 °C) have been synthesized. Among the complexes, that shown in the figure has strong excimer emission attributed to the monomer triplet excited state with a localized structure. The application of this low band-gap material on single-dopant organic or polymer white-light-emitting diodes (WOLED) is highlighted.


Asunto(s)
Complejos de Coordinación/química , Nanopartículas del Metal/química , Compuestos Organoplatinos/química , Compuestos de Bifenilo/química , Láseres de Semiconductores , Ligandos , Modelos Moleculares , Conformación Molecular , Procesos Fotoquímicos , Espectrofotometría Ultravioleta , Estereoisomerismo
4.
Chemistry ; 18(1): 96-109, 2012 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22170325

RESUMEN

A series of [(R'-C^N^C-R'')Pt(L)] complexes with doubly deprotonated cyclometalated R'-C^N^C-R'' ligands (R'-C^N^C-R''=2,6-diphenylpyridine derivatives) functionalized with carbazole, fluorene, or thiophene unit(s) have been synthesized and their photophysical properties studied. The X-ray crystal structures reveal extensive intermolecular π···π and C-H···π interactions between the cyclometalated C^N^C ligands. Compared to previously reported cyclometalated platinum(II) complexes [(C^N^C)Pt(L)], which are non-emissive in solution at room temperature, the carbazole-, fluorene- and thiophene-functionalized [(R'-C^N^C-R'')Pt(L)] (L=DMSO 1-9, C≡N-Ar, 1a-9a) complexes are emissive in solution at room temperature with λ(max) at 564-619 nm and Φ=0.02-0.26. The emissions of the [(R'-C^N^C-R'')Pt(L)] complexes are attributed to electronic excited states with mixed (3)MLCT and (3)IL character. The carbazole/fluorene/thiophene unit(s) allow the tuning of the electronic properties of the [(R'-C^N^C-R'')Pt] moiety, with the emission maxima in a range of 564-619 nm. These are the first examples of organoplatinum(II) complexes bearing doubly deprotonated cyclometalated C^N^C ligands that are emissive in solution at room temperature. In non-degassed DMSO, the emission intensities of 6a-9a are enhanced upon exposure to ambient light. This phenomenon is caused by reacting photogenerated (1)O(2) with a DMSO molecule to form dimethyl sulfone, leading to the removal of dissolved oxygen in solution. Self-assembled nanowires and nanorods are obtained from precipitation of 3a in THF/H(2)O and 8a in DMSO/Et(2)O, respectively. The [(R'-C^N^C-R'')Pt(L)] complexes are soluble in common organic solvents with a high thermal stability (>300 °C), rendering them as phosphorescent dopants for organic light-emitting diode (OLEDs) applications. Red OLEDs with CIE coordinates of (0.65±0.01, 0.35±0.01) were fabricated from 7a or 8a. A maximum external efficiency (η(Ext)) of 12.6% was obtained for the device using 8a as emitter.

5.
Chemistry ; 16(1): 233-47, 2010 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-20013963

RESUMEN

The syntheses, crystal structures, and detailed investigations of the photophysical properties of phosphorescent platinum(II) Schiff base complexes are presented. All of these complexes exhibit intense absorption bands with lambda(max) in the range 417-546 nm, which are assigned to states of metal-to-ligand charge-transfer ((1)MLCT) (1)[Pt(5d)-->pi*(Schiff base)] character mixed with (1)[lone pair(phenoxide)-->pi*(imine)] charge-transfer character. The platinum(II) Schiff base complexes are thermally stable, with decomposition temperatures up to 495 degrees C, and show emission lambda(max) at 541-649 nm in acetonitrile, with emission quantum yields up to 0.27. Measurements of the emission decay times in the temperature range from 130 to 1.5 K give total zero-field splitting parameters of the emitting triplet state of 14-28 cm(-1). High-performance yellow to red organic light-emitting devices (OLEDs) using these platinum(II) Schiff base complexes have been fabricated with the best efficiency up to 31 cd A(-1) and a device lifetime up to 77 000 h at 500 cd m(-2).

6.
Chemistry ; 16(47): 14131-41, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-20960442

RESUMEN

A series of platinum(II) complexes bearing tridentate cyclometalated C^N^N (C^N^N=6-phenyl-2,2'-bipyridine and π-extended R-C^N^N=3-[6'-(naphthalen-2''-yl)pyridin-2'-yl]isoquinoline) ligands with fluorene units have been synthesised and their photophysical properties have been studied. The fluorene units are incorporated into the cyclometalated ligands by a Suzuki coupling reaction. An increase in the π-conjugation of the cyclometalated ligands confers favourable photophysical properties compared to the 6-phenyl-2,2'-bipyridine analogues. The fluorene-based platinum(II) complexes display vibronic-structured emission bands with λ(max)=558-601 nm, and high emission quantum yields up to 0.76 in degassed dichloromethane. Their emissions are tentatively assigned to excited states with mixed (3)IL/(3)MLCT parentage (IL=intraligand, MLCT=metal-to-ligand charge transfer). The crystal structures of these platinum(II) complexes reveal extensive Pt(II)···π and/or π-π interactions. The fluorene-based platinum(II) complexes are soluble in organic solvents, have high thermal stability with decomposition temperature >350 °C, and can be thermally vacuum-sublimed or solution-processed as phosphorescent dopants for the fabrication of organic light-emitting diodes (OLEDs). A monochromic OLED with 3d as dopant (2 wt%) fabricated by vacuum deposition gave a current efficiency of 14.7 cd A(-1) and maximum brightness of 27000 cd m(-2). A high current efficiency (9.2 cd A(-1)) has been achieved in a solution-processed OLED using complex 3f (5 wt%) doped in a PVK (poly(9-vinylcarbazole)) host.

7.
Chem Asian J ; 12(13): 1490-1498, 2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28176456

RESUMEN

A series of dppnc- and neocuproine-based CuI complexes (dppnc=7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate) are synthesized and the emission color of these CuI complexes can be tuned from green to deep red via rational modification of the neocuproine ligand structure. The molecular structures of the emissive CuI complexes, Cu(dppnc)-G (green emitting), Cu(dppnc)-Y (yellow emitting), and Cu(dppnc)-R (red emitting), are characterized and their electronic structures and related transition properties are elucidated by photo-physical and computational (density functional theory) studies. The calculation results suggest that thermally activated delayed fluorescence (TADF) is the emission mechanism for these CuI complexes. Efficient solution-processed green-, yellow-, and red-emitting OLEDs are fabricated based on the emissive complexes as the dopants. High external quantum efficiency (EQE) of 15.20 % and current efficiency of 48.15 cd A-1 at 1000 cd m-2 are achieved in the green-emitting device with Cu(dppnc)-G. A maximum EQE of 10.17 %, CIE coordinates of (0.61, 0.38) and a maximum electroluminescent peak of 631 nm are achieved in the red device based on Cu(dppnc)-R.

8.
Chem Commun (Camb) ; (28): 3547-9, 2005 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-16010319

RESUMEN

Borazine materials have been demonstrated to be a new class of multifunctional and thermally stable materials with high electron (10(-3) cm2 V(-1) s(-1)) and moderate hole (10(-4) cm2 V(-1) s(-1)) mobilities for applications in electroluminescent devices.

9.
Chem Sci ; 6(8): 4623-4635, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29142704

RESUMEN

The synthesis and spectroscopic properties of luminescent tetranuclear zinc(ii) complexes of substituted 7-azaindoles and a series of luminescent copper(i) complexes containing 7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate ligand are described. These complexes are stable towards air and moisture. Thin film samples of the luminescent copper(i) complexes in 2,6-dicarbazolo-1,5-pyridine and zinc(ii) complexes in poly(methyl methacrylate) showed emission quantum yields of up to 0.60 (for Cu-3) and 0.96 (for Zn-1), respectively. Their photophysical properties were examined by ultrafast time-resolved emission spectroscopy, temperature dependent emission lifetime measurements and density functional theory calculations. Monochromic blue and orange solution-processed OLEDs with these Zn(ii) and Cu(i) complexes as light-emitting dopants have been fabricated, respectively. Maximum external quantum efficiency (EQE) of 5.55% and Commission Internationale de l'Eclairage (CIE) coordinates of (0.16, 0.19) were accomplished with the optimized Zn-1-OLED while these values were, respectively 15.64% and (0.48, 0.51) for the optimized Cu-3-OLED. Solution-processed white OLEDs having maximum EQE of 6.88%, CIE coordinates of (0.42, 0.44), and colour rendering index of 81 were fabricated by using these luminescent Zn(ii) and Cu(i) complexes as blue and orange light-emitting dopant materials, respectively.

10.
Chem Commun (Camb) ; (23): 2758-9, 2004 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-15568103

RESUMEN

Thermally stable zinc(II) Schiff base polymers (decomposition temperature up to 461 degrees C; M(n)= 13580 to 20440) formed by self-assembly reactions of zinc(II) salts and salicylaldimine monomers exhibit blue to yellow PL with quantum yields up to 0.34 in DMF; PLEDs employing these polymers as emitters give green or orange EL with turn-on voltage at 5 and 6 V and maximum efficiency of 2.0 and 2.6 cd A(-1) respectively.

11.
Chem Commun (Camb) ; (21): 2512-3, 2004 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-15514841

RESUMEN

A solvochromic material made from incorporation of photoluminescent Pt(II)([formula: see text]) moieties into commercially available homopolymer poly(4-vinylpyridine) exhibits different emission energies, due to different degrees of self-aggregation in various solvents and as thin film upon exposure to vapour of different volatile organic compounds (VOC); self-aggregation enables intra- and intermolecular interactions arising from pi-stacking of the Pt([formula: see text]) moieties, which is affected by medium polarity.


Asunto(s)
Mediciones Luminiscentes , Compuestos Organometálicos/síntesis química , Platino (Metal)/química , Polivinilos/química , Micelas , Estructura Molecular , Solventes/química
12.
Chem Asian J ; 9(10): 2984-94, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25145872

RESUMEN

Sterically hindered platinum(II) Schiff base complexes were prepared. Complex 4, which displays red emission with a quantum yield of 0.29 in a thin film and a self-quenching rate constant of 1×10(-7) dm(3) mol(-1) s(-1), was used to fabricate organic light-emitting diodes with single or double emissive layers (EMLs). An iridium(III) complex with a wide band gap was codoped into the electron-dominant EML to act as a deep electron trapper, and red-light-emitting devices with the highest current, power, and external quantum efficiencies of 20.43 cd A(-1) 18.33 Lm W(-1), and 11.7%, respectively, were fabricated. A high current efficiency and EQE of up to 14.69 cd A(-1) and 8.3%, respectively, were achieved at a high brightness of 1000 cd m(-2). The significant delay of efficiency roll-off is attributed to the bulky 3D structure of the norbornene moiety at the periphery of the Schiff base ligand of 4 and to the new device design strategy. The fabricated device had a projected lifetime (LT50) of 18,000 h.

13.
Chem Asian J ; 9(12): 3572-85, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25297568

RESUMEN

We report the synthesis of a new class of thermally stable and strongly luminescent cyclometalated iridium(III) complexes 1-6, which contain the 2-acetylbenzo[b]thiophene-3-olate (bt) ligand, and their application in organic light-emitting diodes (OLEDs). These heteroleptic iridium(III) complexes with bt as the ancillary ligand have a decomposition temperature that is 10-20 % higher and lower emission self-quenching constants than those of their corresponding complexes with acetylacetonate (acac). The luminescent color of these iridium(III) complexes could be fine-tuned from orange (e.g., 2-phenyl-6-(trifluoromethyl)benzo[d]thiazole (cf3 bta) for 4) to pure red (e.g., lpt (Hlpt=4-methyl-2-(thiophen-2-yl)quinolone) for 6) by varying the cyclometalating ligands (C-deprotonated C^N). In particular, highly efficient OLEDs based on 6 as dopant (emitter) and 1,3-bis(carbazol-9-yl)benzene (mCP) as host that exhibit stable red emission over a wide range of brightness with CIE chromaticity coordinates of (0.67, 0.33) well matched to the National Television System Committee (NTSC) standard have been fabricated along with an external quantum efficiency (EQE) and current efficiency of 9 % and 10 cd A(-1) , respectively. A further 50 % increase in EQE (>13 %) by replacing mCP with bis[4-(6H-indolo[2,3-b]quinoxalin-6-yl)phenyl]diphenylsilane (BIQS) as host for 6 in the red OLED is demonstrated. The performance of OLEDs fabricated with 6 (i.e., [(lpt)2Ir(bt)]) was comparable to that of the analogous iridium(III) complex that bore acac (i.e., [(lpt)2 Ir(acac)]; 6a in this work) [Adv. Mater.- 2011, 23, 2981] fabricated under similar conditions. By using ntt (Hnnt=3-hydroxynaphtho[2,3-b]thiophen-2-yl)(thiophen-2-yl)methanone) ligand, a substituted derivative of bt, the [(cf3bta)2Ir(ntt)] was prepared and found to display deep red emission at around 700 nm with a quantum yield of 12 % in mCP thin film.

14.
Adv Mater ; 25(46): 6765-70, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-23934583

RESUMEN

[Pt(O(∧) N(∧) C(∧) N)]-type complexes are used as single emitters in solution-processed PLEDs with maximum EQEs of 15.55% for green and 12.73% for white devices, which are the highest values ever achieved for PLEDs based on Pt(ii) complexes.

15.
Chem Commun (Camb) ; 49(15): 1497-9, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23321666

RESUMEN

The Pt(II) complexes (1-3) bearing tetradentate O^N^C^N ligands display high emission quantum yields (0.76-0.90) and good thermal stability (T(d) > 400 °C). Complex is an excellent green phosphorescence dopant for OLEDs with excellent efficiency and low efficiency roll-off (η(L), η(Ext)(max) = 66.7 cd A(-1), 18.2%; η(L), η(Ext) (1000 cd m(-2)) = 65.1 cd A(-1), 17.7%).


Asunto(s)
Complejos de Coordinación/química , Platino (Metal)/química , Carbono/química , Cristalografía por Rayos X , Ligandos , Conformación Molecular , Nitrógeno/química , Oxígeno/química , Teoría Cuántica , Espectrofotometría Ultravioleta
16.
Inorg Chem ; 44(13): 4442-4, 2005 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-15962943

RESUMEN

The synthesis and photophysical properties of the robust Pt(II) emitters [(O--N--N)PtX] (HO--N--N = 6-(2-hydroxyphenyl)-2,2'-bipyridine and its derivatives; X = Cl, Br, I, or -CC-Ph) are reported. Yellow electroluminescent devices based on these materials display a low turn-on voltage (1 cd m(-2) at 4 V) and a high luminance (37000 cd m(-2)). Complex 2e, [(F(t)Bu2O--N--N)PtCl], has the highest thermal stability and gave the best OLED.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA