Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Dis ; 103(3): 475-483, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30657427

RESUMEN

In Canada, head lettuce (Lactuca sativa capitata) is extensively produced in the muck soils of southwestern Québec. However, yields are increasingly affected by various soilborne pathogens, including Pythium spp., which cause wilt and damping off. In a survey conducted in Québec muck soils in 2010 and 2011, Pythium tracheiphilum Matta was identified as the predominant Pythium sp. in the root of head lettuce showing Pythium stunt symptoms. Therefore, to improve risk assessment and help further understanding of disease epidemiology, a specific and sensitive real-time quantitative polymerase chain reaction (qPCR) assay based on TaqMan-minor groove binder (MGB) technology was developed for P. tracheiphilum. The PCR primers along with a TaqMan-MGB probe were designed from the ribosomal internal transcribed spacer 2 region. A 100-bp product was amplified by PCR from all P. tracheiphilum isolates tested while no PCR product was obtained from 38 other Pythium spp. or from a selection of additional lettuce pathogens tested. In addition to P. tracheiphilum, the assay was multiplexed with an internal control allowing for the individual validation of each PCR. In artificially infested soils, the sensitivity of the qPCR assay was established as 10 oospores/g of dry soil. P. tracheiphilum was not detected in soils in which lettuce has never been grown; however, inoculum ranged from 0 to more than 200,000 oospores/g of dry soil in commercial lettuce fields. Also, disease incidence was positively correlated with inoculum concentration (r = 0.764). The results suggest that inoculum concentration should be considered when making Pythium stunt management decisions. The developed qPCR assay will facilitate reliable detection and quantification of P. tracheiphilum from field soil.


Asunto(s)
Reacción en Cadena de la Polimerasa Multiplex , Pythium , Reacción en Cadena en Tiempo Real de la Polimerasa , Suelo , Canadá , Cartilla de ADN , Pythium/genética , Pythium/fisiología , Quebec , Suelo/parasitología
2.
BMC Bioinformatics ; 19(1): 395, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30522439

RESUMEN

BACKGROUND: Oligonucleotide signatures (signatures) have been widely used for studying microbial diversity and function in wet-lab settings, but using them for accurate in silico identification of organisms from high-throughput sequencing (HTS) data is only a proof of concept. Existing signature design programs for sequence signatures (signatures matching exactly one sequence) or clade signatures (signatures matching every sequence in a phylogenetic clade) are not able to identify all possible polymorphic sites for sequences with high similarity and perform poorly when handling large genome sequencing datasets. RESULTS: We introduce cluster signatures: subsequences that match perfectly and exclusively any group of sequences in a data set. Cluster signatures provide complete recall for primer/probe design and increased discrimination between sequences beyond that of clade signatures. Using cluster signatures for in silico identification of HTS targets achieves good precision/recall and running time performance. This method has been implemented into an open source tool, the Automated Oligonucleotide Design Pipeline (adop), included in supplementary material and available at: https://bitbucket.org/wenchen_aafc/aodp_v2.0_release . CONCLUSIONS: Cluster signatures provide a rapid and universal analysis tool to identify all possible short diagnostic DNA markers and variants from any DNA sequencing dataset. They are particularly useful in discriminating genetic material from closely related organisms and in detecting deleterious mutations in highly or perfectly conserved genomic sites.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenómica/métodos , Oligonucleótidos/genética , Análisis de Secuencia de ADN/métodos
3.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29475862

RESUMEN

Spore samplers are widely used in pathogen surveillance but not so much for monitoring the composition of aeromycobiota. In Canada, a nationwide spore-sampling network (AeroNet) was established as a pilot project to assess fungal community composition in air and rain samples collected using three different spore samplers in the summers of 2010 and 2011. Metabarcodes of the internal transcribed spacer (ITS) were exhaustively characterized for three of the network sites, in British Columbia (BC), Québec (QC), and Prince Edward Island (PEI), to compare performance of the samplers. Sampler type accounted for ca. 20% of the total explainable variance in aeromycobiota compositional heterogeneity, with air samplers recovering more Ascomycota and rain samplers recovering more Basidiomycota. Spore samplers showed different abilities to collect 27 fungal genera that are plant pathogens. For instance, Cladosporium spp., Drechslera spp., and Entyloma spp. were collected mainly by air samplers, while Fusarium spp., Microdochium spp., and Ustilago spp. were recovered more frequently with rain samplers. The diversity and abundance of some fungi were significantly affected by sampling location and time (e.g., Alternaria and Bipolaris) and weather conditions (e.g., Mycocentrospora and Leptosphaeria), and depended on using ITS1 or ITS2 as the barcoding region (e.g., Epicoccum and Botrytis). The observation that Canada's aeromycobiota diversity correlates with cooler, wetter conditions and northward wind requires support from more long-term data sets. Our vision of the AeroNet network, combined with high-throughput sequencing (HTS) and well-designed sampling strategies, may contribute significantly to a national biovigilance network for protecting plants of agricultural and economic importance in Canada.IMPORTANCE The current study compared the performance of spore samplers for collecting broad-spectrum air- and rain-borne fungal pathogens using a metabarcoding approach. The results provided a thorough characterization of the aeromycobiota in the coastal regions of Canada in relation to the influence of climatic factors. This study lays the methodological basis to eventually develop knowledge-based guidance on pest surveillance by assisting in the selection of appropriate spore samplers.


Asunto(s)
Microbiología del Aire , Hongos/aislamiento & purificación , Micobioma , Manejo de Especímenes/métodos , Esporas Fúngicas/aislamiento & purificación , Ascomicetos/aislamiento & purificación , Basidiomycota/aislamiento & purificación , Colombia Británica , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Proyectos Piloto , Isla del Principe Eduardo , Quebec , Lluvia , Manejo de Especímenes/instrumentación
4.
Int J Syst Evol Microbiol ; 68(1): 234-240, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29160202

RESUMEN

Although the genus Clavibacter was originally proposed to accommodate all phytopathogenic coryneform bacteria containing B2γ diaminobutyrate in the peptidoglycan, reclassification of all but one species into other genera has resulted in the current monospecific status of the genus. The single species in the genus, Clavibacter michiganensis, has multiple subspecies, which are all highly host-specific plant pathogens. Whole genome analysis based on average nucleotide identity and digital DNA-DNA hybridization as well as multi-locus sequence analysis (MLSA) of seven housekeeping genes support raising each of the C. michiganensis subspecies to species status. On the basis of whole genome and MLSA data, we propose the establishment of two new species and three new combinations: Clavibacter capsici sp. nov., comb. nov. and Clavibacter tessellarius sp. nov., comb. nov., and Clavibacter insidiosus comb. nov., Clavibacter nebraskensis comb. nov. and Clavibacter sepedonicus comb. nov.


Asunto(s)
Micrococcaceae/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Genoma Bacteriano , Tipificación de Secuencias Multilocus , Hibridación de Ácido Nucleico , Análisis de Secuencia de ADN
5.
Plant Dis ; 102(7): 1218-1233, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30673582

RESUMEN

International trade and travel are the driving forces behind the spread of invasive plant pathogens around the world, and human-mediated movement of plants and plant products is now generally accepted as the primary mode of their introduction, resulting in huge disturbance to ecosystems and severe socio-economic impact. These problems are exacerbated under the present conditions of rapid climatic change. We report an overview of the Canadian research activities on Phytophthora ramorum. Since the first discovery and subsequent eradication of P. ramorum on infected ornamentals in nurseries in Vancouver, British Columbia, in 2003, a research team of Canadian government scientists representing the Canadian Forest Service, Canadian Food Inspection Agency, and Agriculture and Agri-Food Canada worked together over a 10-year period and have significantly contributed to many aspects of research and risk assessment on this pathogen. The overall objectives of the Canadian research efforts were to gain a better understanding of the molecular diagnostics of P. ramorum, its biology, host-pathogen interactions, and management options. With this information, it was possible to develop pest risk assessments and evaluate the environmental and economic impact and future research needs and challenges relevant to P. ramorum and other emerging forest Phytophthora spp.


Asunto(s)
Phytophthora/fisiología , Enfermedades de las Plantas/microbiología , Investigación/estadística & datos numéricos , Árboles/microbiología , Antibiosis/fisiología , Canadá , Fungicidas Industriales/farmacología , Geografía , Interacciones Huésped-Patógeno/efectos de los fármacos , Phytophthora/efectos de los fármacos , Enfermedades de las Plantas/economía , Investigación/economía , Árboles/clasificación
6.
Phytopathology ; 106(6): 636-44, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26828229

RESUMEN

Synchytrium endobioticum is the fungal agent causing potato wart disease. Because of its severity and persistence, quarantine measures are enforced worldwide to avoid the spread of this disease. Molecular markers exist for species-specific detection of this pathogen, yet markers to study the intraspecific genetic diversity of S. endobioticum were not available. Whole-genome sequence data from Dutch pathotype 1 isolate MB42 of S. endobioticum were mined for perfect microsatellite motifs. Of the 62 selected microsatellites, 21 could be amplified successfully and displayed moderate levels of polymorphism in 22 S. endobioticum isolates from different countries. Nineteen multilocus genotypes were observed, with only three isolates from Canada displaying identical profiles. The majority of isolates from Canada clustered genetically. In contrast, most isolates collected in Europe show no genetic clustering associated with their geographic origin. S. endobioticum isolates with the same pathotype displayed highly variable genotypes and none of the microsatellite markers correlated with a specific pathotype. The markers developed in this study can be used to assess intraspecific genetic diversity of S. endobioticum and allow track and trace of genotypes that will generate a better understanding of the migration and spread of this important fungal pathogen and support management of this disease.


Asunto(s)
Quitridiomicetos/genética , Repeticiones de Microsatélite , Enfermedades de las Plantas/microbiología , Polimorfismo Genético , Solanum tuberosum/microbiología , ADN de Hongos , Genoma Fúngico , Genotipo , Filogenia
7.
Plant Dis ; 100(7): 1482-1491, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30686184

RESUMEN

Phytophthora infestans, a pathogenic oomycete that is the causal agent of potato and tomato late blight, has devastating effects worldwide. The genetic composition of P. infestans populations in Canada has changed considerably over the last few years, with the appearance of several new genotypes showing different mating types and sensitivity to the fungicide metalaxyl. Genetic markers allowing for a rapid assessment of genotypes from small amounts of biological material would be beneficial for the early detection and control of this pathogen throughout Canada. Mining of the P. infestans genome revealed several regions containing single-nucleotide polymorphisms (SNP) within both nuclear genes and flanking sequences of microsatellite loci. Allele-specific oligonucleotide polymerase chain reaction (ASO-PCR) assays were developed from 14 of the 50 SNP found by sequencing. Nine optimized ASO-PCR assays were validated using a blind test comprising P. infestans and other Phytophthora spp. The assays revealed diagnostic profiles unique to each of the five dominant genotypes present in Canada. The markers developed in this study can be used with environmental samples such as infected leaves, and will contribute to the genomic toolbox available to assess the genetic diversity of P. infestans at the intraspecific level. For late blight management, early warning about P. infestans genotypes present in potato and tomato fields will help growers select the most appropriate fungicides and application strategies.

8.
Proc Natl Acad Sci U S A ; 109(16): 6241-6, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22454494

RESUMEN

Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Hongos/genética , Núcleo Celular/genética , Hongos/clasificación , Filogenia , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Especificidad de la Especie
9.
Phytopathology ; 104(4): 422-32, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24328493

RESUMEN

Potato wart, caused by the fungal pathogen Synchytrium endobioticum, is a serious disease with the potential to cause significant economic damage. The small subunit (SSU) and internal transcribed spacer (ITS) ribosomal DNA (rDNA) were sequenced for several Synchytrium spp., showing a high rate of variability for both of these markers among the different species and monophyly of the genus within phylum Chytridiomycota. The intergenic nontranscribed spacer (IGS) of rDNA was sequenced for different pathotypes and showed no intraspecific variation within S. endobioticum, similar to the other rDNA markers from this study. To facilitate screening for the pathogen in soil, three TaqMan polymerase chain reaction (PCR) assays were developed from SSU, ITS, and IGS rDNA sequences to detect S. endobioticum sporangia in the chloroform-flotation fraction of sieved soil extracts. In the screening portion of the method, a first TaqMan assay targeting the SSU rDNA was developed with positive results that were further confirmed with amplicon melt analysis. A synthetic reaction control cloned into a plasmid was incorporated into the procedure, facilitating the validation of negative results. The presence of the reaction control did not adversely affect the efficiency of the SSU target amplification. A second TaqMan assay targeting the ITS-1 region was developed as a confirmatory test. There was 100% accordance between the SSU and ITS-1 TaqMan assays. Utilizing these two assays in tandem achieved good specificity for S. endobioticum, generating negative results with the cloned SSU and ITS-1 regions from all 14 other Synchytrium spp. considered. Spike recovery experiments indicated that these assays, targeting the SSU and ITS-1 rDNA regions, developed from a phylogeny dataset of the genus, could reliably detect a single sporangium in the chloroform flotation fraction of a soil extract. Good correlation between microscopic detection of sporangia and PCR results in both positive and negative soil samples was dually demonstrated for both the SSU and ITS-1 assays.


Asunto(s)
Quitridiomicetos/aislamiento & purificación , Variación Genética , Enfermedades de las Plantas/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Microbiología del Suelo , Solanum tuberosum/microbiología , Secuencia de Bases , Quitridiomicetos/clasificación , Quitridiomicetos/genética , Cartilla de ADN/genética , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Datos de Secuencia Molecular , Filogenia , Sensibilidad y Especificidad , Análisis de Secuencia de ADN
10.
Phytopathology ; 103(1): 43-54, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23050746

RESUMEN

Most Phytophthora spp. are destructive plant pathogens; therefore, effective monitoring and accurate early detection are important means of preventing potential epidemics and outbreaks of diseases. In the current study, a membrane-based oligonucleotide array was developed that can detect Phytophthora spp. reliably using three DNA regions; namely, the internal transcribed spacer (ITS), the 5' end of cytochrome c oxidase 1 gene (cox1), and the intergenic region between cytochrome c oxidase 2 gene (cox2) and cox1 (cox2-1 spacer). Each sequence data set contained ≈250 sequences representing 98 described and 15 undescribed species of Phytophthora. The array was validated with 143 pure cultures and 35 field samples. Together, nonrejected oligonucleotides from all three markers have the ability to reliably detect 82 described and 8 undescribed Phytophthora spp., including several quarantine or regulated pathogens such as Phytophthora ramorum. Our results showed that a DNA array containing signature oligonucleotides designed from multiple genomic regions provided robustness and redundancy for the detection and differentiation of closely related taxon groups. This array has the potential to be used as a routine diagnostic tool for Phytophthora spp. from complex environmental samples without the need for extensive growth of cultures.


Asunto(s)
Marcadores Genéticos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Phytophthora/aislamiento & purificación , Enfermedades de las Plantas/parasitología , Plantas/parasitología , Análisis por Conglomerados , Citocromos c1/genética , Citocromos c2/genética , ADN Intergénico/genética , ADN Espaciador Ribosómico/genética , Estudios de Factibilidad , Oligonucleótidos/genética , Filogenia , Phytophthora/clasificación , Phytophthora/genética , Hojas de la Planta/parasitología , Raíces de Plantas/parasitología , Tallos de la Planta/parasitología , Reacción en Cadena de la Polimerasa , Pythium/clasificación , Pythium/genética , Pythium/aislamiento & purificación , Suelo , Especificidad de la Especie
11.
Plant Dis ; 97(1): 4-20, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30722255

RESUMEN

The genus Pythium is one of the most important groups of soilborne plant pathogens, present in almost every agricultural soil and attacking the roots of thousands of hosts, reducing crop yield and quality. Most species are generalists, necrotrophic pathogens that infect young juvenile tissue. In fact, Cook and Veseth have called Pythium the "common cold" of wheat, because of its chronic nature and ubiquitous distribution. Where Pythium spp. are the cause of seedling damping-off or emergence reduction, the causal agent can easily be identified based on symptoms and culturing. In more mature plants, however, infection by Pythium spp. is more difficult to diagnose, because of the nonspecific symptoms that could have abiotic causes such as nutrient deficiencies or be due to other root rotting pathogens. Molecular methods that can accurately identify and quantify this important group are needed for disease diagnosis and management recommendations and to better understand the epidemiology and ecology of this important group. The purpose of this article is to outline the current state-of-the-art in the detection and quantification of this important genus. In addition, we will introduce the reader to new changes in the taxonomy of this group.

12.
Mycologia ; 115(6): 768-786, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37796448

RESUMEN

The Globisporangium ultimum (formerly Pythium ultimum) species complex was previously composed of two morphological varieties: var. ultimum and var. sporangiiferum. Prior attempts to resolve this morphology-based species complex using molecular techniques have been inconclusive or conflicting. The increased availability of sequenced genomes and isolates identified as G. ultimum var. ultimum and var. sporangiiferum has allowed us to examine these relationships at a higher resolution and with a broader scope than previously possible. Using comparative genomics, we identified highly variable gene regions and designed primers for four new protein-coding genes for phylogenetics. These were then used alongside three known markers to generate a nuclear multigene genealogy of the species complex. From a collection of 163 isolates belonging to the target taxa, a subset of 29 was chosen to be included in this study (verified with nuclear rDNA internal transcribed spacer 1 [ITS1] and mitochondrial cytochrome c oxidase subunit 1 [cox1] sequences). Seventeen isolates of var. ultimum were selected to be representative of variations in genotype, morphology, and geographic collection location. The 12 isolates of var. sporangiiferum included all available specimens identified either morphologically (in previous studies) or through sequence similarity with ITS1 and cox1. Based on the fulfillment of reciprocal monophyly and observed genealogical concordance under the genealogical concordance phylogenetic species recognition, we determined that the Globisporangium ultimum species complex is composed of four genetically distinct species: Globisporangium ultimum, Globisporangium sporangiiferum, Globisporangium solveigiae, and Globisporangium bothae.


Asunto(s)
Pythium , Pythium/genética , Filogenia , Secuencia de Bases , Genotipo , ADN Ribosómico
13.
Mycologia ; 114(3): 501-515, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35522547

RESUMEN

The genus Pythium (nom. cons.) sensu lato (s.l.) is composed of many important species of plant pathogens. Early molecular phylogenetic studies suggested paraphyly of Pythium, which led to a formal proposal by Uzuhashi and colleagues in 2010 to split the genus into Pythium sensu stricto (s.s.), Elongisporangium, Globisporangium, Ovatisporangium (= Phytopythium), and Pilasporangium using morphological characters and phylogenies of the mt cytochrome c oxidase subunit 2 (cox2) and D1-D2 domains of nuc 28S rDNA. Although the split was fairly justified by the delineating morphological characters, there were weaknesses in the molecular analyses, which created reluctance in the scientific community to adopt these new genera for the description of new species. In this study, this issue was addressed using phylogenomics. Whole genomes of 109 strains of Pythium and close relatives were sequenced, assembled, and annotated. These data were combined with 10 genomes sequenced in previous studies. Phylogenomic analyses were performed with 148 single-copy genes represented in at least 90% of the taxa in the data set. The results showed support for the division of Pythium s.l. The status of alternative generic names that have been used for species of Pythium in the past (e.g., Artotrogus, Cystosiphon, Eupythium, Nematosporangium, Rheosporangium, Sphaerosporangium) was investigated. Based on our molecular analyses and review of the Pythium generic concepts, we urge the scientific community to adopt the generic names Pythium, Elongisporangium, Globisporangium, and their concepts as proposed by Uzuhashi and colleagues in 2010 in their work going forward. In order to consolidate the taxonomy of these genera, some of the recently described Pythium spp. are transferred to Elongisporangium and Globisporangium.


Asunto(s)
Pythium , Secuencia de Bases , ADN Ribosómico , Filogenia , Secuenciación Completa del Genoma
14.
Phytopathology ; 100(8): 732-7, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20626276

RESUMEN

Sequences of selected marker loci have been widely used for the identification of specific pathogens and the development of sequence-based diagnostic methods. Although such approaches offer several advantages over traditional culture-based methods for pathogen diagnosis and identification, they have their own pitfalls. These include erroneous and incomplete data in reference databases, poor or oversimplified interpretation of search results, and problems associated with defining species boundaries. In this letter, we outline the potential benefits and drawbacks of using sequence data for identification and taxonomic deduction of plant-pathogenic fungi and oomycetes, using phytophthora as a primary example. We also discuss potential remedies for these pitfalls and address why coordinated community efforts are essential to make such remedies more efficient and robust.


Asunto(s)
Hongos/clasificación , Phytophthora/clasificación , Enfermedades de las Plantas/microbiología , ADN de Algas , ADN de Hongos , Bases de Datos de Ácidos Nucleicos , Hongos/genética , Phytophthora/genética , Análisis de Secuencia de ADN
15.
Appl Environ Microbiol ; 75(14): 4790-800, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19447961

RESUMEN

Fungal and oomycete populations and their dynamics were investigated following the introduction of the biocontrol agent Pythium oligandrum into the rhizosphere of tomato plants grown in soilless culture. Three strains of P. oligandrum were selected on the basis of their ability to form oospores (resting structures) and to produce tryptamine (an auxin-like compound) and oligandrin (a glycoprotein elicitor). Real-time PCR and plate counting demonstrated the persistence of large amounts of the antagonistic oomycete in the rhizosphere throughout the cropping season (April to September). Inter-simple-sequence-repeat analysis of the P. oligandrum strains collected from root samples at the end of the cropping season showed that among the three strains used for inoculation, the one producing the smallest amount of oospores was detected at 90%. Single-strand conformational polymorphism analysis revealed increases in the number of members and the complexity of the fungal community over time. There were no significant differences between the microbial ecosystems inoculated with P. oligandrum and those that were not treated, except for a reduction of Pythium dissotocum (ubiquitous tomato root minor pathogen) populations in inoculated systems during the last 3 months of culture. These findings raise interesting issues concerning the use of P. oligandrum strains producing elicitor and auxin molecules for plant protection and the development of biocontrol.


Asunto(s)
Biodiversidad , Hongos/clasificación , Hongos/aislamiento & purificación , Oomicetos/clasificación , Oomicetos/aislamiento & purificación , Control Biológico de Vectores/métodos , Pythium/crecimiento & desarrollo , Microbiología del Suelo , Solanum lycopersicum/microbiología , Antibiosis , Recuento de Colonia Microbiana , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo Conformacional Retorcido-Simple
16.
Mycologia ; 101(4): 439-48, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19623925

RESUMEN

Pythium senticosum and P. takayamanum spp. nov. were isolated from cool-temperate forest soil in Japan. P. senticosum can grow at 5 C and is fast growing at 25 C with a radial growth of 22.2 mm 24 h(-1). The species is morphologically characterized by ovoid to ellipsoid sporangia with apical papilla, ornamented oogonia with acute conical spines, and antheridia with broad attachment to oogonia. P. takayamanum is very different and can grow at 35 C. This species is morphologically characterized by its wavy antheridial stalks and ellipsoidal oogonia with constricted areas. Phylogenetic analyses of the ITS rDNA region and the partial COX2 gene showed that the two species are genetically distinct from each other and from their closest relatives. P. senticosum is closely related to P. dimorphum and P. undulatum whereas P. takayamanum is closely related to P. rhizosaccharum and P. parvum.


Asunto(s)
Pythium/aislamiento & purificación , Microbiología del Suelo , Árboles/microbiología , Frío , ADN de Algas/genética , ADN Espaciador Ribosómico/genética , Complejo IV de Transporte de Electrones/genética , Hifa/citología , Japón , Filogenia , Pythium/citología , Pythium/genética , Análisis de Secuencia de ADN
17.
Sci Rep ; 9(1): 8672, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31209237

RESUMEN

Synchytrium endobioticum is an obligate biotrophic soilborne Chytridiomycota (chytrid) species that causes potato wart disease, and represents the most basal lineage among the fungal plant pathogens. We have chosen a functional genomics approach exploiting knowledge acquired from other fungal taxa and compared this to several saprobic and pathogenic chytrid species. Observations linked to obligate biotrophy, genome plasticity and pathogenicity are reported. Essential purine pathway genes were found uniquely absent in S. endobioticum, suggesting that it relies on scavenging guanine from its host for survival. The small gene-dense and intron-rich chytrid genomes were not protected for genome duplications by repeat-induced point mutation. Both pathogenic chytrids Batrachochytrium dendrobatidis and S. endobioticum contained the largest amounts of repeats, and we identified S. endobioticum specific candidate effectors that are associated with repeat-rich regions. These candidate effectors share a highly conserved motif, and show isolate specific duplications. A reduced set of cell wall degrading enzymes, and LysM protein expansions were found in S. endobioticum, which may prevent triggering plant defense responses. Our study underlines the high diversity in chytrids compared to the well-studied Ascomycota and Basidiomycota, reflects characteristic biological differences between the phyla, and shows commonalities in genomic features among pathogenic fungi.


Asunto(s)
Quitridiomicetos/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Filogenia , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Ascomicetos/clasificación , Ascomicetos/genética , Ascomicetos/metabolismo , Basidiomycota/clasificación , Basidiomycota/genética , Basidiomycota/metabolismo , Pared Celular/química , Pared Celular/microbiología , Quitridiomicetos/clasificación , Quitridiomicetos/metabolismo , Secuencia Conservada , Proteínas Fúngicas/metabolismo , Duplicación de Gen , Expresión Génica , Ontología de Genes , Variación Genética , Genómica/métodos , Guanina/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo , Repeticiones de Microsatélite , Anotación de Secuencia Molecular , Células Vegetales/microbiología , Mutación Puntual
18.
Front Microbiol ; 9: 2301, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30425684

RESUMEN

This study applied a 16S rRNA gene metabarcoding approach to characterize bacterial community compositional and functional attributes for surface water samples collected within, primarily, agriculturally dominated watersheds in Ontario and Québec, Canada. Compositional heterogeneity was best explained by stream order, season, and watercourse discharge. Generally, community diversity was higher at agriculturally dominated lower order streams, compared to larger stream order systems such as small to large rivers. However, during times of lower relative water flow and cumulative 2-day rainfall, modestly higher relative diversity was found in the larger watercourses. Bacterial community assemblages were more sensitive to environmental/land use changes in the smaller watercourses, relative to small-to-large river systems, where the proximity of the sampled water column to bacteria reservoirs in the sediments and adjacent terrestrial environment was greater. Stream discharge was the environmental variable most significantly correlated (all positive) with bacterial functional groups, such as C/N cycling and plant pathogens. Comparison of the community structural similarity via network analyses helped to discriminate sources of bacteria in freshwater derived from, for example, wastewater treatment plant effluent and intensity and type of agricultural land uses (e.g., intensive swine production vs. dairy dominated cash/livestock cropping systems). When using metabarcoding approaches, bacterial community composition and coexisting pattern rather than individual taxonomic lineages, were better indicators of environmental/land use conditions (e.g., upstream land use) and bacterial sources in watershed settings. Overall, monitoring changes and differences in aquatic microbial communities at regional and local watershed scales has promise for enhancing environmental footprinting and for better understanding nutrient cycling and ecological function of aquatic systems impacted by a multitude of stressors and land uses.

19.
Genome Announc ; 4(1)2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26769939

RESUMEN

We report the draft genome sequence of Alternaria alternata ATCC 34957. This strain was previously reported to produce alternariol and alternariol monomethyl ether on weathered grain sorghum. The genome was sequenced with PacBio technology and assembled into 27 scaffolds with a total genome size of 33.5 Mb.

20.
Syst Appl Microbiol ; 39(2): 93-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26723853

RESUMEN

A study on the taxonomic classification of Arcobacter species was performed on the cultures isolated from various fecal sources where an Arcobacter strain AF1078(T) from human waste septic tank near Ottawa, Ontario, Canada was characterized using a polyphasic approach. Genetic investigations including 16S rRNA, atpA, cpn60, gyrA, gyrB and rpoB gene sequences of strain AF1078(T) are unique in comparison with other arcobacters. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain is most closely related to Arcobacter lanthieri and Arcobacter cibarius. Analyses of atpA, cpn60, gyrA, gyrB and rpoB gene sequences suggested that strain AF1078(T) formed a phylogenetic lineage independent of other species in the genus. Whole-genome sequence, DNA-DNA hybridization, fatty acid profile and phenotypic analysis further supported the conclusion that strain AF1078(T) represents a novel Arcobacter species, for which the name Arcobacter faecis sp. nov. is proposed, with type strain AF1078(T) (=LMG 28519(T); CCUG 66484(T)).


Asunto(s)
Arcobacter/clasificación , Técnicas de Tipificación Bacteriana , Arcobacter/aislamiento & purificación , Arcobacter/ultraestructura , Ácidos Grasos/química , Heces/microbiología , Genes Bacterianos , Genoma Bacteriano , Humanos , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA