Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 35(6): 2251-2270, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36807983

RESUMEN

The plant cuticle, a structure primarily composed of wax and cutin, forms a continuous coating over most aerial plant surfaces. The cuticle plays important roles in plant tolerance to environmental stress, including stress imposed by drought. Some members of the 3-KETOACYL-COA SYNTHASE (KCS) family are known to act as metabolic enzymes involved in cuticular wax production. Here we report that Arabidopsis (Arabidopsis thaliana) KCS3, which was previously shown to lack canonical catalytic activity, instead functions as a negative regulator of wax metabolism by reducing the enzymatic activity of KCS6, a key KCS involved in wax production. We demonstrate that the role of KCS3 in regulating KCS6 activity involves physical interactions between specific subunits of the fatty acid elongation complex and is essential for maintaining wax homeostasis. We also show that the role of the KCS3-KCS6 module in regulating wax synthesis is highly conserved across diverse plant taxa from Arabidopsis to the moss Physcomitrium patens, pointing to a critical ancient and basal function of this module in finely regulating wax synthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Mutación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
Plant J ; 118(5): 1619-1634, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38456566

RESUMEN

The plant cuticle is composed of cuticular wax and cutin polymers and plays an essential role in plant tolerance to diverse abiotic and biotic stresses. Several stresses, including water deficit and salinity, regulate the synthesis of cuticular wax and cutin monomers. However, the effect of wounding on wax and cutin monomer production and the associated molecular mechanisms remain unclear. In this study, we determined that the accumulation of wax and cutin monomers in Arabidopsis leaves is positively regulated by wounding primarily through the jasmonic acid (JA) signaling pathway. Moreover, we observed that a wound- and JA-responsive gene (CYP96A4) encoding an ER-localized cytochrome P450 enzyme was highly expressed in leaves. Further analyses indicated that wound-induced wax and cutin monomer production was severely inhibited in the cyp96a4 mutant. Furthermore, CYP96A4 interacted with CER1 and CER3, the core enzymes in the alkane-forming pathway associated with wax biosynthesis, and modulated CER3 activity to influence aldehyde production in wax synthesis. In addition, transcripts of MYC2 and JAZ1, key genes in JA signaling pathway, were significantly reduced in cyp96a4 mutant. Collectively, these findings demonstrate that CYP96A4 functions as a cofactor of the alkane synthesis complex or participates in JA signaling pathway that contributes to cuticular wax biosynthesis and cutin monomer formation in response to wounding.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ciclopentanos , Sistema Enzimático del Citocromo P-450 , Regulación de la Expresión Génica de las Plantas , Lípidos de la Membrana , Oxilipinas , Hojas de la Planta , Ceras , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimología , Ceras/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Lípidos de la Membrana/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Transducción de Señal , Epidermis de la Planta/metabolismo , Epidermis de la Planta/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Liasas de Carbono-Carbono , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice
3.
Plant Physiol ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709681

RESUMEN

Cuticular wax is a protective layer on the aerial surfaces of land plants. In Arabidopsis (Arabidopsis thaliana), cuticular wax is mainly constituted of compounds derived from very-long-chain fatty acids (VLCFAs) with chain lengths longer than C28. CER2-LIKE (ECERIFERUM2-LIKE) proteins interact with CER6/KCS6 (ECERIFERUM6/ß-Ketoacyl-CoA Synthase6), the key enzyme of the fatty acid elongase complex, to modify its substrate specificity for VLCFA elongation past C28. However, the molecular regulatory mechanism of CER2-LIKE proteins remains unclear. Arabidopsis eceriferum19 (cer19) mutants display wax-deficient stems caused by loss of waxes longer than C28, indicating that CER19 may participate in the CER2-LIKE-mediated VLCFA elongation past C28. Using positional cloning and genetic complementation, we showed that CER19 encodes Acetyl-CoA Carboxylase1 (ACC1), which catalyzes the synthesis of malonyl-CoA, the essential substrate for the CER6/KCS6-mediated condensation reaction in VLCFA synthesis. We demonstrated that ACC1 physically interacts with CER2-LIKE proteins via split-ubiquitin yeast two-hybrid (SUY2H) and firefly luciferase complementation imaging (LCI) analysis. Additionally, heterologous expression in yeast and genetic analysis in Arabidopsis revealed that ACC1 affects CER2 activity to influence VLCFA elongation past C28. These findings imply that CER2-LIKE proteins might function as a link between ACC1 and CER6/KCS6 and subsequently enhance CER6/KCS6 binding to malonyl-CoA for further utilization in VLCFA elongation past C28. This information deepens our understanding of the complex mechanism of cuticular wax biosynthesis.

4.
Plant Physiol ; 191(3): 1751-1770, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36617225

RESUMEN

Plant cuticles are composed of hydrophobic cuticular waxes and cutin. Very long-chain fatty acids (VLCFAs) are components of epidermal waxes and the plasma membrane and are involved in organ morphogenesis. By screening a barrelclover (Medicago truncatula) mutant population tagged by the transposable element of tobacco (Nicotiana tabacum) cell type1 (Tnt1), we identified two types of mutants with unopened flower phenotypes, named unopened flower1 (uof1) and uof2. Both UOF1 and UOF2 encode enzymes that are involved in the biosynthesis of VLCFAs and cuticular wax. Comparative analysis of the mutants indicated that the mutation in UOF1, but not UOF2, leads to the increased number of leaflets in M. truncatula. UOF1 was specifically expressed in the outermost cell layer (L1) of the shoot apical meristem (SAM) and leaf primordia. The uof1 mutants displayed defects in VLCFA-mediated plasma membrane integrity, resulting in the disordered localization of the PIN-FORMED1 (PIN1) ortholog SMOOTH LEAF MARGIN1 (SLM1) in M. truncatula. Our work demonstrates that the UOF1-mediated biosynthesis of VLCFAs in L1 is critical for compound leaf patterning, which is associated with the polarization of the auxin efflux carrier in M. truncatula.


Asunto(s)
Medicago truncatula , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Flores/genética , Flores/metabolismo , Ácidos Grasos/metabolismo , Ceras/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Mutación/genética
5.
J Exp Bot ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38706401

RESUMEN

Wax biosynthesis is strictly regulated by many regulators under different environmental conditions. Our previous study showed that the regulation module miR156/SQUAMOSA PROMOTER BINDING PROTEIN-LIKE9 (SPL9)/DEWAX is identified to be involved in the diurnal regulation of wax production, however, it was unknown if other SPLs are also involved in the wax synthesis. Here, we reported that SPL13 regulates drought-induced wax production as well. Moreover, its regulatory role directly or indirectly affects the expression of two wax biosynthesis genes CER1 and CER4. Further study showed that SPL13 together with SPL9 redundantly regulated the wax accumulation upon either normal conditions or drought stress, simultaneous mutation of both genes additively enhanced cuticle permeability and decreased the drought tolerance. However, different from SPL9, SPL13 seemed not to participate in the DEWAX-mediated diurnal regulation of wax production.

6.
J Exp Bot ; 74(21): 6575-6587, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37615538

RESUMEN

The plant cuticle, consisting of wax and cutin, is involved in adaptations to various environments. ß-Ketoacyl-CoA synthases (KCSs) usually serve as a component of the fatty acid elongation complex that participates in the production of very long-chain fatty acids and provides precursors for the synthesis of various lipids, including wax; however, we recently reported that KCS3 and KCS12 negatively regulate wax biosynthesis. In this current study, we observed that unlike KCS3-overexpressing (OE) lines, KCS12-OE lines had fused floral organs because of abnormal cuticle biosynthesis. This prompted us to compare the functions of KCS3 and KCS12 during cuticle formation. Mutation of KCS3 caused greater effects on wax production, whereas mutation of KCS12 exerted more severe effects on cutin synthesis. The double-mutant kcs3 kcs12 had significantly increased wax and cutin contents compared to either single-mutant, suggesting that KCS12 and KCS3 have additive effects on cuticle biosynthesis. Cuticle permeability was greater for the double-mutant than for the single mutants, which ultimately led to increased susceptibility to drought stress and floral-organ fusion. Taken together, our results demonstrate the regulatory roles of KCS3 and KCS12 during cuticle biosynthesis, and show that maintaining KCS3 and KCS12 expression at certain levels is essential for the formation of a functional cuticle layer.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ceras , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Permeabilidad , Ceras/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa
7.
Mol Breed ; 43(9): 68, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37608925

RESUMEN

The rapid development of global industrialization has led to serious environmental problems, among which global warming has become one of the major concerns. The gradual rise in global temperature resulted in the loss of food production, and hence a serious threat to world food security. Rice is the main crop for approximately half of the world's population, and its geographic distribution, yield, and quality are frequently reduced due to elevated temperature stress, and breeding rice varieties with tolerance to heat stress is of immense significance. Therefore, it is critical to study the molecular mechanism of rice in response to heat stress. In the last decades, large amounts of studies have been conducted focusing on rice heat stress response. Valuable information has been obtained, which not only sheds light on the regulatory network underlying this physiological process but also provides some candidate genes for improved heat tolerance breeding in rice. In this review, we summarized the studies in this field. Hopefully, it will provide some new insights into the mechanisms of rice under high temperature stress and clues for future engineering breeding of improved heat tolerance rice.

8.
Plant J ; 108(6): 1735-1753, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34643970

RESUMEN

Light quantity and quality affect many aspects of plant growth and development. However, few reports have addressed the molecular connections between seed oil accumulation and light conditions, especially dense shade. Shade-avoiding plants can redirect plant resources into extension growth at the expense of leaf and root expansion in an attempt to reach areas containing richer light. Here, we report that tung tree seed oil accumulation is suppressed by dense shade during the rapid oil accumulation phase. Transcriptome analysis confirmed that oil accumulation suppression due to dense shade was attributed to reduced expression of fatty acid and triacylglycerol biosynthesis-related genes. Through weighted gene co-expression network analysis, we identified 32 core transcription factors (TFs) specifically upregulated in densely shaded seeds during the rapid oil accumulation period. Among these, VfHB21, a class I homeodomain leucine zipper TF, was shown to suppress expression of FAD2 and FADX, two key genes related to α-eleostearic acid, by directly binding to HD-ZIP I/II motifs in their respective promoter regions. VfHB21 also binds to similar motifs in the promoters of VfWRI1 and VfDGAT2, two additional key seed lipid regulatory/biosynthetic genes. Functional conservation of HB21 during plant evolution was demonstrated by the fact that AtWRI1, AtSAD1, and AtFAD2 were downregulated in VfHB21-overexpressor lines of transgenic Arabidopsis, with concomitant seed oil reduction, and the fact that AtHB21 expression also was induced by shade. This study reveals some of the regulatory mechanisms that specifically control tung tree seed oil biosynthesis and more broadly regulate plant storage carbon partitioning in response to dense shade conditions.


Asunto(s)
Euphorbiaceae/metabolismo , Proteínas de Plantas/genética , Semillas/metabolismo , Triglicéridos/biosíntesis , Arabidopsis/genética , Arabidopsis/metabolismo , Euphorbiaceae/genética , Ácido Graso Desaturasas/genética , Regulación de la Expresión Génica de las Plantas , Leucina Zippers , Luz , Ácidos Linolénicos/genética , Ácidos Linolénicos/metabolismo , Filogenia , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Aceites de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Semillas/genética , Semillas/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Árboles , Triglicéridos/genética
9.
Plant J ; 107(1): 77-99, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33860574

RESUMEN

Wounding during mechanical harvesting and post-harvest handling results in tuber desiccation and provides an entry point for pathogens resulting in substantial post​-harvest crop losses. Poor wound healing is a major culprit of these losses. Wound tissue in potato (Solanum tuberosum) tubers, and all higher plants, is composed of a large proportion of suberin that is deposited in a specialized tissue called the wound periderm. However, the genetic regulatory pathway controlling wound-induced suberization remains unknown. Here, we implicate two potato transcription factors, StMYB102 (PGSC0003DMG400011250) and StMYB74 (PGSC0003DMG400022399), as regulators of wound suberin biosynthesis and deposition. Using targeted metabolomics and transcript profiling from the wound healing tissues of two commercial potato cultivars, as well as heterologous expression, we provide evidence for the molecular-genetic basis of the differential wound suberization capacities of different potato cultivars. Our results suggest that (i) the export of suberin from the cytosol to the apoplast and ligno-suberin deposition may be limiting factors for wound suberization, (ii) StMYB74 and StMYB102 are important regulators of the wound suberization process in tubers, and (iii) polymorphisms in StMYB102 may influence cultivar-specific wound suberization capacity. These results represent an important step in understanding the regulated biosynthesis and deposition of wound suberin and provide a practical foundation for targeted breeding approaches aimed at improving potato tuber storage life.


Asunto(s)
Lípidos/biosíntesis , Proteínas de Plantas/genética , Tubérculos de la Planta/fisiología , Solanum tuberosum/fisiología , Regulación de la Expresión Génica de las Plantas , Lípidos/genética , Fenoles/metabolismo , Células Vegetales , Tubérculos de la Planta/genética , Polimorfismo Genético , Solanum tuberosum/citología , Solanum tuberosum/genética , Factores de Transcripción/genética , Ceras/metabolismo
10.
New Phytol ; 236(2): 385-398, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35751382

RESUMEN

Genetic signature of climate adaptation has been widely recognized across the genome of many organisms; however, the eco-physiological basis for linking genomic polymorphisms with local adaptations remains largely unexplored. Using a panel of 218 world-wide Arabidopsis accessions, we characterized the natural variation in root suberization by quantifying 16 suberin monomers. We explored the associations between suberization traits and 126 climate variables. We conducted genome-wide association analysis and integrated previous genotype-environment association (GEA) to identify the genetic bases underlying suberization variation and their involvements in climate adaptation. Root suberin content displays extensive variation across Arabidopsis populations and significantly correlates with local moisture gradients and soil characteristics. Specifically, enhanced suberization is associated with drier environments, higher soil cation-exchange capacity, and lower soil pH; higher proportional levels of very-long-chain suberin is negatively correlated with moisture availability, lower soil gravel content, and higher soil silt fraction. We identified 94 putative causal loci and experimentally proved that GPAT6 is involved in C16 suberin biosynthesis. Highly significant associations between the putative genes and environmental variables were observed. Roots appear highly responsive to environmental heterogeneity via regulation of suberization, especially the suberin composition. The patterns of suberization-environment correlation and the suberin-related GEA fit the expectations of local adaptation for the polygenic suberization trait.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Estudio de Asociación del Genoma Completo , Raíces de Plantas/genética , Suelo
11.
New Phytol ; 233(6): 2458-2470, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34942034

RESUMEN

Iso-branched wax compounds are well known in plants, but their biosynthetic pathways are still mostly unknown. It has been speculated that branched waxes are derived from branched-chain amino acid (BCAA) catabolism, but the evidence for this is very limited. Gas chromatography-flame ionisation detection (GC-FID) analysis revealed that mutations in two subunits of the branched-chain ketoacid dehydrogenase (BCKDH) complex, a key enzyme complex in the degradation of BCAAs, significantly decreased the amounts of branched wax compounds, indicating that BCAA degradation may be integral to the synthesis of iso-branched wax. Substrate feeding studies further revealed that the metabolic precursor of iso-branched wax compounds is isobutyric acid (iBA), which is derived from valine degradation in Arabidopsis. We also isolated a novel mutant and found that its branched wax deficient phenotype could not be rescued by iBA. Map-based cloning together with complementation analysis revealed that mutation in ACYL-ACTIVATING ENZYME 9 (AAE9) is responsible for this phenotype. Genetic and enzyme activity analysis demonstrated that AAE9 is located downstream of the BCAA degradation pathway, and that it activates iBA to isobutyryl-CoA for use on branched wax synthesis. Taken together, our study demonstrates that AAE9 is a key factor connecting BCAA catabolism with branched wax biosynthesis.


Asunto(s)
Aminoácidos de Cadena Ramificada , Proteínas de Arabidopsis , Arabidopsis , Coenzima A Ligasas , Ceras , Aminoácidos de Cadena Ramificada/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Ceras/metabolismo
12.
New Phytol ; 236(6): 2115-2130, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36110041

RESUMEN

Plant cuticular wax accumulation limits nonstomatal transpiration and is regulated by external environmental stresses. DEWAX (DECREASE WAX BIOSYNTHESIS) plays a vital role in diurnal wax biosynthesis. However, how DEWAX expression is controlled and the molecular mechanism of wax biosynthesis regulated by the diurnal cycle remains largely unknown. Here, we identified two Arabidopsis MYB-SHAQKYF transcription factors, MYS1 and MYS2, as new regulators in wax biosynthesis and drought tolerance. Mutations of both MYS1 and MYS2 caused significantly reduced leaf wax, whereas overexpression of MYS1 or MYS2 increased leaf wax biosynthesis and enhanced drought tolerance. Our results demonstrated that MYS1 and MYS2 act as transcription repressors and directly suppress DEWAX expression via ethylene response factor-associated amphiphilic repression motifs. Genetic interaction analysis with DEWAX, SPL9 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9), and CER1 (ECERIFERUM 1) in wax biosynthesis and under drought stresses demonstrated that MYS1 and MYS2 act upstream of the DEWAX-SPL9 module, thus regulating CER1 expression. Expression analysis suggested that the diurnal expression pattern of DEWAX is partly regulated by MYS1 and MYS2. Our findings demonstrate the roles of two unidentified transcription repressors, MYS1 and MYS2, in wax biosynthesis and provide insights into the mechanism of diurnal cycle-regulated wax biosynthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Epidermis de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , Ceras/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/metabolismo , Hojas de la Planta/metabolismo
13.
J Exp Bot ; 73(9): 3018-3029, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35560209

RESUMEN

The alcohol- and alkane-forming pathways in cuticular wax biosynthesis are well characterized in Arabidopsis. However, potential interactions between the two pathways remain unclear. Here, we reveal that mutation of CER4, the key gene in the alcohol-forming pathway, also led to a deficiency in the alkane-forming pathway in distal stems. To trace the connection between the two pathways, we characterized two homologs of fatty alcohol oxidase (FAO), FAO3 and FAO4b, which were highly expressed in distal stems and localized to the endoplasmic reticulum. The amounts of waxes from the alkane-forming pathway were significantly decreased in stems of fao4b and much lower in fao3 fao4b plants, indicative of an overlapping function for the two proteins in wax synthesis. Additionally, overexpression of FAO3 and FAO4b in Arabidopsis resulted in a dramatic reduction of primary alcohols and significant increases of aldehydes and related waxes. Moreover, expressing FAO3 or FAO4b led to significantly decreased amounts of C18-C26 alcohols in yeast co-expressing CER4 and FAR1. Collectively, these findings demonstrate that FAO3 and FAO4b are functionally redundant in suppressing accumulation of primary alcohols and contributing to aldehyde production, which provides a missing and long-sought-after link between these two pathways in wax biosynthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oxidorreductasas de Alcohol , Alcoholes/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Alcanos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Nucleares/metabolismo , Epidermis de la Planta/metabolismo , Ceras/metabolismo
14.
Plant Cell ; 31(11): 2711-2733, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31484683

RESUMEN

Plant surface waxes form an outer barrier that protects the plant from many forms of environmental stress. The deposition of cuticular waxes on the plant surface is regulated by external environmental changes, including light and dark cycles. However, the underlying molecular mechanisms controlling light regulation of wax production are still poorly understood, especially at the posttranscriptional level. In this paper, we report the regulation of cuticular wax production by the miR156-SPL9 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9) module in Arabidopsis (Arabidopsis thaliana). When compared with wild-type plants, miR156 and SPL9 mutants showed significantly altered cuticular wax amounts in both stems and leaves. Furthermore, it was found that SPL9 positively regulates gene expression of the alkane-forming enzyme ECERIFERUM1 (CER1), as well as the primary (1-) alcohol-forming enzyme ECERIFERUM4 (CER4), to enhance alkane and 1-alcohol synthesis, respectively. Our results indicate that complex formation of SPL9 with a negative regulator of wax synthesis, DEWAX, will hamper SPL9 DNA binding ability, possibly by interfering with SPL9 homodimerization. Combined with their diurnal gene and protein expressions, this dynamic repression-activation transcriptional module defines a dynamic mechanism that may allow plants to optimize wax synthesis during daily cycles. These findings provide a regulatory framework for environmental signal integration in the regulation of wax synthesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Epidermis de la Planta/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Ceras/metabolismo , Aldehído Oxidorreductasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/metabolismo , Epidermis de la Planta/genética , Plantas Modificadas Genéticamente , Estrés Fisiológico , Transactivadores/genética
15.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36555796

RESUMEN

Fatty acyl reductase (FAR) is a crucial enzyme that catalyzes the NADPH-dependent reduction of fatty acyl-CoA or acyl-ACP substrates to primary fatty alcohols, which in turn acts as intermediate metabolites or metabolic end products to participate in the formation of plant extracellular lipid protective barriers (e.g., cuticular wax, sporopollenin, suberin, and taproot wax). FARs are widely present across plant evolution processes and play conserved roles during lipid synthesis. In this review, we provide a comprehensive view of FAR family enzymes, including phylogenetic analysis, conserved structural domains, substrate specificity, subcellular localization, tissue-specific expression patterns, their varied functions in lipid biosynthesis, and the regulation mechanism of FAR activity. Finally, we pose several questions to be addressed, such as the roles of FARs in tryphine, the interactions between transcription factors (TFs) and FARs in various environments, and the identification of post-transcriptional, translational, and post-translational regulators.


Asunto(s)
Aldehído Oxidorreductasas , Oxidorreductasas , Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/metabolismo , Filogenia , Plantas/genética , Plantas/metabolismo , Alcoholes Grasos , Especificidad por Sustrato
16.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35457268

RESUMEN

3-ketoacyl-CoA synthases (KCSs), as components of a fatty acid elongase (FAE) complex, play key roles in determining the chain length of very-long-chain fatty acids (VLCFAs). KCS6, taking a predominate role during the elongation from C26 to C28, is well known to play an important role in wax synthesis. KCS5 is one paralog of KCS6 and its role in wax synthesis remains unknown. Wax phenotype analysis showed that in kcs5 mutants, the total amounts of wax components derived from carbon 32 (C32) and C34 were apparently decreased in leaves, and those of C26 to C32 derivatives were obviously decreased in flowers. Heterologous yeast expression analysis showed that KCS5 alone displayed specificity towards C24 to C28 acids, and its coordination with CER2 and CER26 catalyzed the elongation of acids exceeding C28, especially displaying higher activity towards C28 acids than KCS6. BiLC experiments identified that KCS5 physically interacts with CER2 and CER26. Wax phenotype analysis of different organs in kcs5 and kcs6 single or double mutants showed that KCS6 mutation causes greater effects on the wax synthesis than KCS5 mutation in the tested organs, and simultaneous repression of both protein activities caused additive effects, suggesting that during the wax biosynthesis process, KCS5 and KCS6 play redundant roles, among which KCS6 plays a major role. In addition, simultaneous mutations of two genes nearly block drought-induced wax production, indicating that the reactions catalyzed by KCS5 and KCS6 play a critical role in the wax biosynthesis in response to drought.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ceras , Flores/genética , Flores/metabolismo , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Ceras/metabolismo
17.
Plant Physiol ; 182(3): 1211-1221, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31941670

RESUMEN

The aerial surfaces of land plants have a protective layer of cuticular wax. Alkanes are common components of these waxes, and their abundance is affected by a range of stresses. The CER16 protein has been implicated in alkane biosynthesis in the cuticular wax of Arabidopsis (Arabidopsis thaliana). Here, we identified two new mutant alleles of CER16 in Arabidopsis resulting in production of less wax with dramatically fewer alkanes than the wild type. Map-based cloning with genetic analysis revealed that the cer16 phenotype was caused by complete loss of AT5G44150, encoding a protein with no known domains or motifs. Comparative transcriptomic analysis revealed that transcripts of CER3, previously shown to play a principal role in alkane production, were markedly reduced in the cer16 mutants. To define the relationship between CER3 and CER16, we transformed the full CER3 gene into a cer16 mutant. Transgenic CER3 expression was silenced, and levels of small interfering RNAs targeting CER3 were significantly increased. Mutating two major components of the RNA-silencing machinery in a cer16 genetic background restored CER3 transcript levels to wild-type levels, with the stems restored to wild-type glaucousness. We suggest that CER16 deficiency induces post-transcriptional gene silencing of both endogenous and exogenous expression of CER3.


Asunto(s)
Alcanos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Liasas de Carbono-Carbono/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Liasas de Carbono-Carbono/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Mutación , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
18.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34502106

RESUMEN

Cutin and wax are the main precursors of the cuticle that covers the aerial parts of plants and provide protection against biotic and abiotic stresses. Long-chain acyl-CoA synthetases (LACSs) play diversified roles in the synthesis of cutin, wax, and triacylglycerol (TAG). Most of the information concerned with LACS functions is obtained from model plants, whereas the roles of LACS genes in Glycine max are less known. Here, we have identified 19 LACS genes in Glycine max, an important crop plant, and further focused our attention on 4 LACS2 genes (named as GmLACS2-1, 2, 3, 4, respectively). These GmLACS2 genes display different expression patterns in various organs and also show different responses to abiotic stresses, implying that these genes might play diversified functions during plant growth and against stresses. To further identify the role of GmLACS2-3, greatly induced by abiotic stresses, we transformed a construct containing its full length of coding sequence into Arabidopsis. The expression of GmLACS2-3 in an Arabidopsis atlacs2 mutant greatly suppressed its phenotype, suggesting it plays conserved roles with that of AtLACS2. The overexpression of GmLACS2-3 in wild-type plants significantly increased the amounts of cutin and suberin but had little effect on wax amounts, indicating the specific role of GmLACS2-3 in the synthesis of cutin and suberin. In addition, these GmLACS2-3 overexpressing plants showed enhanced drought tolerance. Taken together, our study deepens our understanding of the functions of LACS genes in different plants and also provides a clue for cultivating crops with strong drought resistance.


Asunto(s)
Coenzima A Ligasas/metabolismo , Glycine max/genética , Lípidos/biosíntesis , Lípidos de la Membrana/biosíntesis , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Clonación Molecular , Coenzima A Ligasas/genética , Proteínas de Plantas/genética , Glycine max/metabolismo
19.
Molecules ; 26(10)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067825

RESUMEN

Lupeol, a natural lupane-type pentacyclic triterpene, possesses various pharmacological properties, and its production attracts attention. Significant quantities of lupeol are deposited on the castor aerial organ surface and are easily extractable as a predominant wax constituent. Thus, castor might be considered as a potential bioreactor for the production of lupeol. The lupeol biosynthesis pathway is well known, but how it is regulated remains largely unknown. Among large numbers of castor cultivars, we targeted one accession line (337) with high levels of lupeol on its stem surface and low levels thereof on its hypocotyl surface, implicating that lupeol synthesis is differentially regulated in the two organs. To explore the underlying mechanisms, we did comparative transcriptome analysis of the first internode of 337 stem and the upper hypocotyl. Our results show that large amounts of auxin-related genes are differentially expressed in both parts, implying some possible interactions between auxin and lupeol production. We also found that several auxin-responsive cis-elements are present in promoter regions of HMGR and LUS genes encoding two key enzymes involved in lupeol production. Furthermore, auxin treatments apparently induced the expression levels of RcHMGR and RcLUS. Furthermore, we observed that auxin treatment significantly increased lupeol contents, whereas inhibiting auxin transport led to an opposite phenotype. Our study reveals some relationships between hormone activity and lupeol synthesis and might provide a promising way for improving lupeol yields in castor.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Triterpenos Pentacíclicos/metabolismo , Ricinus/metabolismo , Aceite de Ricino/aislamiento & purificación , Aceite de Ricino/metabolismo , Epidermis/metabolismo , Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/análisis , Triterpenos Pentacíclicos/análisis , Transducción de Señal , Transcriptoma/genética
20.
New Phytol ; 228(6): 1880-1896, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32542680

RESUMEN

The plant leaf surface is coated with a waterproof cuticle layer. Cuticle facing the stomatal pore surface needs to be sculpted to form outer cuticular ledge (OCL) after stomatal maturation for efficient gas exchange. Here, we characterized the roles of Arabidopsis GDSL lipase, Occlusion of Stomatal Pore 1 (OSP1), in wax biosynthesis and stomatal OCL formation. OSP1 mutation results in significant reduction in leaf wax synthesis and occlusion of stomata, leading to increased epidermal permeability, decreased transpiration rate, and enhanced drought tolerance. We demonstrated that OSP1 activity is critical for its role in wax biosynthesis and stomatal function. In vitro enzymatic assays demonstrated that OSP1 possesses thioesterase activity, particularly on C22:0 and C26:0 acyl-CoAs. Genetic interaction analyses with CER1 (ECERIFERUM 1), CER3 (ECERIFERUM 3) and MAH1 (Mid-chain Alkane Hydroxylase 1) in wax biosynthesis and stomatal OCL formation showed that OSP1 may act upstream of CER3 in wax biosynthesis, and implicate that wax composition percentage changes and keeping ketones in a lower level play roles, at least partially, in forming stomatal ledges. Our findings provided insights into the molecular mechanism mediating wax biosynthesis and highlighted the link between wax biosynthesis and the process of stomatal OCL formation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Liasas de Carbono-Carbono , Regulación de la Expresión Génica de las Plantas , Lipasa , Epidermis de la Planta/metabolismo , Hojas de la Planta/metabolismo , Ceras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA