Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 573(7773): 266-270, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31462781

RESUMEN

Body-axis elongation constitutes a key step in animal development, laying out the final form of the entire animal. It relies on the interplay between intrinsic forces generated by molecular motors1-3, extrinsic forces exerted by adjacent cells4-7 and mechanical resistance forces due to tissue elasticity or friction8-10. Understanding how mechanical forces influence morphogenesis at the cellular and molecular level remains a challenge1. Recent work has outlined how small incremental steps power cell-autonomous epithelial shape changes1-3, which suggests the existence of specific mechanisms that stabilize cell shapes and counteract cell elasticity. Beyond the twofold stage, embryonic elongation in Caenorhabditis elegans is dependent on both muscle activity7 and the epidermis; the tension generated by muscle activity triggers a mechanotransduction pathway in the epidermis that promotes axis elongation7. Here we identify a network that stabilizes cell shapes in C. elegans embryos at a stage that involves non-autonomous mechanical interactions between epithelia and contractile cells. We searched for factors genetically or molecularly interacting with the p21-activating kinase homologue PAK-1 and acting in this pathway, thereby identifying the α-spectrin SPC-1. Combined absence of PAK-1 and SPC-1 induced complete axis retraction, owing to defective epidermal actin stress fibre. Modelling predicts that a mechanical viscoplastic deformation process can account for embryo shape stabilization. Molecular analysis suggests that the cellular basis for viscoplasticity originates from progressive shortening of epidermal microfilaments that are induced by muscle contractions relayed by actin-severing proteins and from formin homology 2 domain-containing protein 1 (FHOD-1) formin bundling. Our work thus identifies an essential molecular lock acting in a developmental ratchet-like process.


Asunto(s)
Actinas/metabolismo , Tipificación del Cuerpo/fisiología , Caenorhabditis elegans/embriología , Citoesqueleto de Actina/metabolismo , Animales , Caenorhabditis elegans/citología , Embrión no Mamífero , Células Epidérmicas/citología
2.
Nature ; 574(7778): E17, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31582857

RESUMEN

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nature ; 573(7775): E4, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31488913

RESUMEN

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Development ; 146(24)2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31784459

RESUMEN

Mechanical forces can elicit a mechanotransduction response through junction-associated proteins. In contrast to the wealth of knowledge available for focal adhesions and adherens junctions, much less is known about mechanotransduction at hemidesmosomes. Here, we focus on the C. elegans plectin homolog VAB-10A, the only evolutionary conserved hemidesmosome component. In C. elegans, muscle contractions induce a mechanotransduction pathway in the epidermis through hemidesmosomes. We used CRISPR to precisely remove spectrin repeats (SRs) or a partially hidden Src homology 3 (SH3) domain within the VAB-10 plakin domain. Deleting the SH3 or SR8 domains in combination with mutations affecting mechanotransduction, or just the part of SR5 shielding the SH3 domain, induced embryonic elongation arrest because hemidesmosomes collapse. Notably, recruitment of GIT-1, the first mechanotransduction player, requires the SR5 domain and the hemidesmosome transmembrane receptor LET-805. Furthermore, molecular dynamics simulations confirmed that forces acting on VAB-10 could make the central SH3 domain, otherwise in contact with SR4, available for interaction. Collectively, our data strongly indicate that the plakin domain plays a central role in mechanotransduction and raise the possibility that VAB-10/plectin might act as a mechanosensor.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Mecanotransducción Celular/genética , Morfogénesis/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Embrión no Mamífero , Epidermis/embriología , Epidermis/metabolismo , Simulación de Dinámica Molecular , Dominios Proteicos/genética , Dominios Proteicos/fisiología , Imagen de Lapso de Tiempo
5.
J Cell Sci ; 131(11)2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29748380

RESUMEN

Hemidesmosomes are epithelial-specific attachment structures that maintain tissue integrity and resist tension. Despite their importance, how hemidesmosomes are regulated at the post-transcriptional level is poorly understood. Caenorhabditiselegans hemidesmosomes (CeHDs) have a similar structure and composition to their mammalian counterparts, making C. elegans an ideal model for studying hemidesmosomes. Here, we focus on the transcription regulator CCAR-1, identified in a previous genetic screen searching for enhancers of mutations in the conserved hemidesmosome component VAB-10A (known as plectin in mammals). Loss of CCAR-1 function in a vab-10(e698) background results in CeHD disruption and muscle detachment from the epidermis. CCAR-1 regulates CeHD biogenesis, not by controlling the transcription of CeHD-related genes, but by affecting the alternative splicing of unc-52 (known as perlecan or HSPG2 in mammals), the predicted basement extracellular matrix (ECM) ligand of CeHDs. CCAR-1 physically interacts with HRP-2 (hnRNPR in mammals), a splicing factor known to mediate unc-52 alternative splicing to control the proportions of different UNC-52 isoforms and stabilize CeHDs. Our discovery underlines the importance of post-transcriptional regulation in hemidesmosome reorganization. It also uncovers previously unappreciated roles of CCAR-1 in alternative splicing and hemidesmosome biogenesis, shedding new light on the mechanisms through which mammalian CCAR1 functions in tumorigenesis.


Asunto(s)
Empalme Alternativo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Hemidesmosomas/metabolismo , Proteínas de la Membrana/metabolismo , Proteoglicanos/metabolismo , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Epidermis/embriología , Epidermis/metabolismo , Hemidesmosomas/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Proteínas de la Membrana/genética , Músculos/embriología , Músculos/metabolismo , Unión Proteica , Proteoglicanos/genética
6.
Development ; 144(23): 4336-4349, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28526752

RESUMEN

Epithelia are bound by both basal and apical extracellular matrices (ECM). Although the composition and function of the former have been intensively investigated, less is known about the latter. The embryonic sheath, the ECM apical to the Caenorhabditis elegans embryonic epidermis, has been suggested to promote elongation of the embryo. In an RNAi screen for the components of the sheath, we identified the zona pellucida domain proteins NOAH-1 and NOAH-2. We found that these proteins act in the same pathway, and in parallel to three other putative sheath proteins, the leucine-rich repeat proteins SYM-1, LET-4 and FBN-1/Fibrillin, to ensure embryonic integrity and promote elongation. Laser nano-ablation experiments to map the stress field show that NOAH-1 and NOAH-2, together with PAK-1/p21-activated kinase, maintain and relay the actomyosin-dependent stress generated within the lateral epidermis before muscles become active. Subsequently, loss-of-function experiments show that apical ECM proteins are essential for muscle anchoring and for relaying the mechanical input from muscle contractions, which are essential for elongation. Hence, the apical ECM contributes to morphogenesis by maintaining embryonic integrity and relaying mechanical stress.


Asunto(s)
Caenorhabditis elegans/embriología , Matriz Extracelular/fisiología , Morfogénesis/fisiología , Actomiosina/fisiología , Animales , Fenómenos Biomecánicos , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Proteínas de la Matriz Extracelular/antagonistas & inhibidores , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/fisiología , Genes de Helminto , Proteínas Repetidas Ricas en Leucina , Modelos Biológicos , Morfogénesis/genética , Proteínas/antagonistas & inhibidores , Proteínas/genética , Proteínas/fisiología , Interferencia de ARN , Estrés Mecánico , Glicoproteínas de la Zona Pelúcida/antagonistas & inhibidores , Glicoproteínas de la Zona Pelúcida/genética , Glicoproteínas de la Zona Pelúcida/fisiología
7.
Development ; 143(1): 160-73, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26586219

RESUMEN

C. elegans embryonic elongation is a morphogenetic event driven by actomyosin contractility and muscle-induced tension transmitted through hemidesmosomes. A role for the microtubule cytoskeleton has also been proposed, but its contribution remains poorly characterized. Here, we investigate the organization of the non-centrosomal microtubule arrays present in the epidermis and assess their function in elongation. We show that the microtubule regulators γ-tubulin and NOCA-1 are recruited to hemidesmosomes and adherens junctions early in elongation. Several parallel approaches suggest that microtubule nucleation occurs from these sites. Disrupting the epidermal microtubule array by overexpressing the microtubule-severing protein Spastin or by inhibiting the C. elegans ninein homolog NOCA-1 in the epidermis mildly affected elongation. However, microtubules were essential for elongation when hemidesmosomes or the activity of the Rho kinase LET-502/ROCK were partially compromised. Imaging of junctional components and genetic analyses suggest that epidermal microtubules function together with Rho kinase to promote the transport of E-cadherin to adherens junctions and myotactin to hemidesmosomes. Our results indicate that the role of LET-502 in junctional remodeling is likely to be independent of its established function as a myosin II activator, but requires a microtubule-dependent pathway involving the syntaxin SYX-5. Hence, we propose that non-centrosomal microtubules organized by epidermal junctions contribute to elongation by transporting junction remodeling factors, rather than having a mechanical role.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Células Epidérmicas , Microtúbulos/metabolismo , Quinasas Asociadas a rho/metabolismo , Actomiosina/metabolismo , Uniones Adherentes/metabolismo , Animales , Cadherinas/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas del Citoesqueleto , Citoesqueleto/metabolismo , Epidermis/metabolismo , Hemidesmosomas/metabolismo , Morfogénesis/fisiología , Proteínas Musculares/metabolismo , Miosina Tipo II/metabolismo , Proteínas Nucleares , Transporte de Proteínas/genética , Proteínas Qa-SNARE/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Tubulina (Proteína)/metabolismo
8.
Phys Rev Lett ; 121(26): 268102, 2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30636158

RESUMEN

The role of the actomyosin network is investigated in the elongation of C. elegans during embryonic morphogenesis. We present a model of active elongating matter that combines prestress and passive stress in nonlinear elasticity. Using this model we revisit recently published data from laser ablation experiments to account for why cells under contraction can lead to an opening fracture. By taking into account the specific embryo geometry, we obtain quantitative predictions for the contractile forces exerted by the molecular motors myosin II for an elongation up to 70% of the initial length. This study demonstrates the importance of active processes in embryonic morphogenesis and the interplay between geometry and nonlinear mechanics during morphological events. In particular, it outlines the role of each connected layer of the epidermis compressed by an apical extracellular matrix that distributes the stresses during elongation.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Desarrollo Embrionario , Morfogénesis , Estrés Fisiológico , Animales , Caenorhabditis elegans/fisiología
9.
Gut ; 66(10): 1748-1760, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-27371534

RESUMEN

OBJECTIVE: Epidemiological and clinical data indicate that patients suffering from IBD with long-standing colitis display a higher risk to develop colorectal high-grade dysplasia. Whereas carcinoma invasion and metastasis rely on basement membrane (BM) disruption, experimental evidence is lacking regarding the potential contribution of epithelial cell/BM anchorage on inflammation onset and subsequent neoplastic transformation of inflammatory lesions. Herein, we analyse the role of the α6ß4 integrin receptor found in hemidesmosomes that attach intestinal epithelial cells (IECs) to the laminin-containing BM. DESIGN: We developed new mouse models inducing IEC-specific ablation of α6 integrin either during development (α6ΔIEC) or in adults (α6ΔIEC-TAM). RESULTS: Strikingly, all α6ΔIEC mutant mice spontaneously developed long-standing colitis, which degenerated overtime into infiltrating adenocarcinoma. The sequence of events leading to disease onset entails hemidesmosome disruption, BM detachment, IL-18 overproduction by IECs, hyperplasia and enhanced intestinal permeability. Likewise, IEC-specific ablation of α6 integrin induced in adult mice (α6ΔIEC-TAM) resulted in fully penetrant colitis and tumour progression. Whereas broad-spectrum antibiotic treatment lowered tissue pathology and IL-1ß secretion from infiltrating myeloid cells, it failed to reduce Th1 and Th17 response. Interestingly, while the initial intestinal inflammation occurred independently of the adaptive immune system, tumourigenesis required B and T lymphocyte activation. CONCLUSIONS: We provide for the first time evidence that loss of IECs/BM interactions triggered by hemidesmosome disruption initiates the development of inflammatory lesions that progress into high-grade dysplasia and carcinoma. Colorectal neoplasia in our mouse models resemble that seen in patients with IBD, making them highly attractive for discovering more efficient therapies.


Asunto(s)
Adenocarcinoma/fisiopatología , Colitis/fisiopatología , Neoplasias Colorrectales/fisiopatología , Citocinas/metabolismo , Hemidesmosomas/fisiología , Integrina alfa6/genética , Integrina alfa6beta4/metabolismo , Mucosa Intestinal/metabolismo , Inmunidad Adaptativa , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animales , Linfocitos B , Membrana Basal/fisiopatología , Caspasa 1/metabolismo , Colitis/genética , Colitis/metabolismo , Colitis/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Citocinas/genética , Células Epiteliales/metabolismo , Hemidesmosomas/genética , Homeostasis/genética , Mucosa Intestinal/patología , Mucosa Intestinal/fisiopatología , Queratina-18/metabolismo , Queratina-8/metabolismo , Activación de Linfocitos , Ratones , Moco/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Permeabilidad , Índice de Severidad de la Enfermedad , Transducción de Señal , Linfocitos T
10.
Hum Mol Genet ; 24(22): 6428-45, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26358775

RESUMEN

Duchenne muscular dystrophy (DMD) is a genetic disease characterized by progressive muscle degeneration due to mutations in the dystrophin gene. In spite of great advances in the design of curative treatments, most patients currently receive palliative therapies with steroid molecules such as prednisone or deflazacort thought to act through their immunosuppressive properties. These molecules only slightly slow down the progression of the disease and lead to severe side effects. Fundamental research is still needed to reveal the mechanisms involved in the disease that could be exploited as therapeutic targets. By studying a Caenorhabditis elegans model for DMD, we show here that dystrophin-dependent muscle degeneration is likely to be cell autonomous and affects the muscle cells the most involved in locomotion. We demonstrate that muscle degeneration is dependent on exercise and force production. Exhaustive studies by electron microscopy allowed establishing for the first time the chronology of subcellular events occurring during the entire process of muscle degeneration. This chronology highlighted the crucial role for dystrophin in stabilizing sarcomeric anchoring structures and the sarcolemma. Our results suggest that the disruption of sarcomeric anchoring structures and sarcolemma integrity, observed at the onset of the muscle degeneration process, triggers subcellular consequences that lead to muscle cell death. An ultra-structural analysis of muscle biopsies from DMD patients suggested that the chronology of subcellular events established in C. elegans models the pathogenesis in human. Finally, we found that the loss of sarcolemma integrity was greatly reduced after prednisone treatment suggesting a role for this molecule in plasma membrane stabilization.


Asunto(s)
Distrofia Muscular de Duchenne/patología , Sarcolema/ultraestructura , Sarcómeros/patología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Mutación , Sarcolema/metabolismo , Sarcolema/patología , Sarcómeros/metabolismo , Sarcómeros/ultraestructura
11.
Nature ; 471(7336): 99-103, 2011 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-21368832

RESUMEN

Mechanotransduction refers to the transformation of physical forces into chemical signals. It generally involves stretch-sensitive channels or conformational change of cytoskeleton-associated proteins. Mechanotransduction is crucial for the physiology of several organs and for cell migration. The extent to which mechanical inputs contribute to development, and how they do this, remains poorly defined. Here we show that a mechanotransduction pathway operates between the body-wall muscles of Caenorhabditis elegans and the epidermis. This pathway involves, in addition to a Rac GTPase, three signalling proteins found at the hemidesmosome: p21-activated kinase (PAK-1), the adaptor GIT-1 and its partner PIX-1. The phosphorylation of intermediate filaments is one output of this pathway. Tension exerted by adjacent muscles or externally exerted mechanical pressure maintains GIT-1 at hemidesmosomes and stimulates PAK-1 activity through PIX-1 and Rac. This pathway promotes the maturation of a hemidesmosome into a junction that can resist mechanical stress and contributes to coordinating the morphogenesis of epidermal and muscle tissues. Our findings suggest that the C. elegans hemidesmosome is not only an attachment structure, but also a mechanosensor that responds to tension by triggering signalling processes. We suggest that similar pathways could promote epithelial morphogenesis or wound healing in other organisms in which epithelial cells adhere to tension-generating contractile cells.


Asunto(s)
Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Epidermis/embriología , Mecanotransducción Celular/fisiología , Morfogénesis , Contracción Muscular/fisiología , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/enzimología , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Células Epidérmicas , Hemidesmosomas/metabolismo , Filamentos Intermedios/metabolismo , Músculos/embriología , Músculos/fisiología , Fenotipo , Fosforilación , Transducción de Señal , Quinasas p21 Activadas/metabolismo
12.
Genesis ; 54(4): 229-42, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26789944

RESUMEN

The microtubule cytoskeleton has a dual contribution to cell organization. First, microtubules help displace chromosomes and provide tracks for organelle transport. Second, microtubule rigidity confers specific mechanical properties to cells, which are crucial in cilia or mechanosensory structures. Here we review the recently uncovered organization and functions of noncentrosomal microtubules in C. elegans epithelia, focusing on how they contribute to nuclear positioning and protein transport. In addition, we describe recent data illustrating how the microtubule and actin cytoskeletons interact to achieve those functions.


Asunto(s)
Caenorhabditis elegans/citología , Epitelio/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Transporte de Proteínas
14.
J Cell Sci ; 125(Pt 13): 3039-49, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22929901

RESUMEN

There is growing awareness that mechanical forces - in parallel to electrical or chemical inputs - have a central role in driving development and influencing the outcome of many diseases. However, we still have an incomplete understanding of how such forces function in coordination with each other and with other signalling inputs in vivo. Mechanical forces, which are generated throughout the organism, can produce signals through force-sensitive processes. Here, we first explore the mechanisms through which forces can be generated and the cellular responses to forces by discussing several examples from animal development. We then go on to examine the mechanotransduction-induced signalling processes that have been identified in vivo. Finally, we discuss what is known about the specificity of the responses to different forces, the mechanisms that might stabilize cells in response to such forces, and the crosstalk between mechanical forces and chemical signalling. Where known, we mention kinetic parameters that characterize forces and their responses. The multi-layered regulatory control of force generation, force response and force adaptation should be viewed as a well-integrated aspect in the greater biological signalling systems.


Asunto(s)
Forma de la Célula , Citoesqueleto/química , Mecanotransducción Celular , Animales , Fenómenos Biomecánicos , Adhesión Celular , Movimiento Celular , Polaridad Celular , Drosophila/química , Drosophila/citología , Drosophila/embriología , Matriz Extracelular/química , Morfogénesis , Contracción Muscular , Estrés Mecánico
15.
Development ; 138(20): 4475-85, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21937599

RESUMEN

Neurons require precise targeting of their axons to form a connected network and a functional nervous system. Although many guidance receptors have been identified, much less is known about how these receptors signal to direct growth cone migration. We used Caenorhabditis elegans motoneurons to study growth cone directional migration in response to a repellent UNC-6 (netrin homolog) guidance cue. The evolutionarily conserved kinase MIG-15 [homolog of Nck-interacting kinase (NIK)] regulates motoneuron UNC-6-dependent repulsion through unknown mechanisms. Using genetics and live imaging techniques, we show that motoneuron commissural axon morphology defects in mig-15 mutants result from impaired growth cone motility and subsequent failure to migrate across longitudinal obstacles or retract extra processes. To identify new genes acting with mig-15, we screened for genetic enhancers of the mig-15 commissural phenotype and identified the ezrin/radixin/moesin ortholog ERM-1, the kinesin-1 motor UNC-116 and the actin regulator WVE-1 complex. Genetic analysis indicates that mig-15 and erm-1 act in the same genetic pathway to regulate growth cone migration and that this pathway functions in parallel to the UNC-116/WVE-1 pathway. Further, time-lapse imaging of growth cones in mutants suggests that UNC-116 might be required to stimulate protrusive activity at the leading edge, whereas MIG-15 and ERM-1 maintain low activity at the rear edge. Together, these results support a model in which the MIG-15 kinase and the UNC-116-WVE-1 complex act on opposite sides of the growth cone to promote robust directional migration.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Conos de Crecimiento/metabolismo , Cinesinas/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Movimiento Celular/fisiología , Polaridad Celular , Proteínas del Citoesqueleto/genética , Genes de Helminto , Cinesinas/genética , Neuronas Motoras/metabolismo , Mutación , Neurogénesis/genética , Neurogénesis/fisiología , Interferencia de ARN
16.
Development ; 138(18): 4013-23, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21831923

RESUMEN

Cytoskeletal regulation is important in cell migration. The Caenorhabditis elegans gonadal distal tip cells (DTCs) offer a simple model with which to investigate the mechanism of cell migration in organogenesis. Here, we report that one of the spectraplakin isoforms, VAB-10B1, plays an essential role in cell and nuclear migration of DTCs by regulating the actin and microtubule (MT) cytoskeleton. In the vab-10(tk27) mutant, which lacks VAB-10B1, alignment of filamentous (F)-actin and MTs was weakly and severely disorganized, respectively, which resulted in a failure to translocate the DTC nucleus and a premature termination of DTC migration. An MT growing-tip marker, EBP-2-GFP, revealed that polarized outgrowth of MTs towards the nuclei of migrating DTCs was strikingly impaired in tk27 animals. A vab-10 mini-gene encoding only the actin- and MT-binding domains significantly rescued the gonadal defects, suggesting that VAB-10B1 has a role in linking actin and MT filaments. These results suggest that VAB-10B1/spectraplakin regulates the polarized alignment of MTs, possibly by linking F-actin and MTs, which enables normal nuclear translocation and cell migration of DTCs.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Movimiento Celular/genética , Núcleo Celular/fisiología , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/fisiología , Actinas/metabolismo , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Caenorhabditis elegans/embriología , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Embrión no Mamífero , Gónadas/metabolismo , Gónadas/fisiología , Microtúbulos/metabolismo , Microtúbulos/fisiología , Modelos Biológicos , Plaquinas/genética , Plaquinas/metabolismo , Plaquinas/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiología
17.
PLoS Genet ; 7(3): e1001341, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21437263

RESUMEN

Genome sequence comparisons have highlighted many novel gene families that are conserved across animal phyla but whose biological function is unknown. Here, we functionally characterize a member of one such family, the macoilins. Macoilins are characterized by several highly conserved predicted transmembrane domains towards the N-terminus and by coiled-coil regions C-terminally. They are found throughout Eumetazoa but not in other organisms. Mutants for the single Caenorhabditis elegans macoilin, maco-1, exhibit a constellation of behavioral phenotypes, including defects in aggregation, O2 responses, and swimming. MACO-1 protein is expressed broadly and specifically in the nervous system and localizes to the rough endoplasmic reticulum; it is excluded from dendrites and axons. Apart from subtle synapse defects, nervous system development appears wild-type in maco-1 mutants. However, maco-1 animals are resistant to the cholinesterase inhibitor aldicarb and sensitive to levamisole, suggesting pre-synaptic defects. Using in vivo imaging, we show that macoilin is required to evoke Ca²(+) transients, at least in some neurons: in maco-1 mutants the O2-sensing neuron PQR is unable to generate a Ca²(+) response to a rise in O2. By genetically disrupting neurotransmission, we show that pre-synaptic input is not necessary for PQR to respond to O2, indicating that the response is mediated by cell-intrinsic sensory transduction and amplification. Disrupting the sodium leak channels NCA-1/NCA-2, or the N-,P/Q,R-type voltage-gated Ca²(+) channels, also fails to disrupt Ca²(+) responses in the PQR cell body to O2 stimuli. By contrast, mutations in egl-19, which encodes the only Caenorhabditis elegans L-type voltage-gated Ca²(+) channel α1 subunit, recapitulate the Ca²(+) response defect we see in maco-1 mutants, although we do not see defects in localization of EGL-19. Together, our data suggest that macoilin acts in the ER to regulate assembly or traffic of ion channels or ion channel regulators.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Aldicarb/farmacología , Secuencia de Aminoácidos , Animales , Antinematodos/farmacología , Axones/metabolismo , Conducta Animal/fisiología , Caenorhabditis elegans/clasificación , Caenorhabditis elegans/efectos de los fármacos , Proteínas de Caenorhabditis elegans/química , Calcio/metabolismo , Canales Iónicos/metabolismo , Levamisol/farmacología , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Mutación/genética , Neuronas/citología , Filogenia , Alineación de Secuencia , Sinapsis/metabolismo
19.
Genetics ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39053622

RESUMEN

The elongation of C. elegans embryos allows examination of mechanical interactions between adjacent tissues. Muscle contractions during late elongation induce the remodelling of epidermal circumferential actin filaments through mechanotransduction. Force inputs from the muscles deform circumferential epidermal actin filament, which causes them to be severed, eventually reformed and shortened. This squeezing force drives embryonic elongation. We investigated the possible role of the non-muscle myosins NMY-1 and NMY-2 in this process using nmy-1 and nmy-2 thermosensitive alleles. Our findings show these myosins act redundantly in late elongation, since double nmy-2(ts); nmy-1(ts) mutants immediately stop elongation when raised to 25°C. Their inactivation does not reduce muscle activity, as measured from epidermis deformation, suggesting that they are directly involved in the multi-step process of epidermal remodeling. Furthermore, NMY-1 and NMY-2 inactivation is reversible when embryos are kept at the non-permissive temperature for a few hours. However, after longer exposure to 25°C double mutant embryos fail to resume elongation, presumable because NMY-1 was seen to form protein aggregates. We propose that the two C. elegans non-muscle myosin II act during actin remodeling either to bring severed ends or hold them.

20.
Dev Biol ; 350(2): 267-78, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21130760

RESUMEN

Caenorhabditis elegans embryonic elongation depends on both epidermal and muscle cells. The hemidesmosome-like junctions, commonly called fibrous organelles (FOs), that attach the epidermis to the extracellular matrix ensure muscle anchoring to the cuticular exoskeleton and play an essential role during elongation. To further define how hemidesmosomes might control elongation, we searched for factors interacting with the core hemidesmosome component, the spectraplakin homolog VAB-10. Using the VAB-10 plakin domain as bait in a yeast two-hybrid screen, we identified the novel protein T17H7.4. We also identified T17H7.4 in an independent bioinformatic search for essential nematode-specific proteins that could define novel anti-nematode drug or vaccine targets. Interestingly, T17H7.4 corresponds to the C. elegans equivalent of the parasitic OvB20 antigen, and has a characteristic hemidesmosome distribution. We identified two mutations in T17H7.4, one of which defines the uncharacterized gene pat-12, previously identified in screens for genes required for muscle assembly. Using isoform-specific GFP constructs, we showed that one pat-12 isoform with a hemidesmosome distribution can rescue a pat-12 null allele. We further found that lack of pat-12 affects hemidesmosome integrity, with marked defects at the apical membrane. PAT-12 defines a novel component of C. elegans hemidesmosomes, which is required for maintaining their integrity. We suggest that PAT-12 helps maintaining VAB-10 attachment with matrix receptors.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/embriología , Hemidesmosomas/fisiología , Morfogénesis , Animales , Antinematodos , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Células HeLa , Humanos , Biogénesis de Organelos , Orgánulos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA