Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 139(3): 343-356, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34517413

RESUMEN

In vitro generation and expansion of hematopoietic stem cells (HSCs) holds great promise for the treatment of any ailment that relies on bone marrow or blood transplantation. To achieve this, it is essential to resolve the molecular and cellular pathways that govern HSC formation in the embryo. HSCs first emerge in the aorta-gonad-mesonephros (AGM) region, where a rare subset of endothelial cells, hemogenic endothelium (HE), undergoes an endothelial-to-hematopoietic transition (EHT). Here, we present full-length single-cell RNA sequencing (scRNA-seq) of the EHT process with a focus on HE and dorsal aorta niche cells. By using Runx1b and Gfi1/1b transgenic reporter mouse models to isolate HE, we uncovered that the pre-HE to HE continuum is specifically marked by angiotensin-I converting enzyme (ACE) expression. We established that HE cells begin to enter the cell cycle near the time of EHT initiation when their morphology still resembles endothelial cells. We further demonstrated that RUNX1 AGM niche cells consist of vascular smooth muscle cells and PDGFRa+ mesenchymal cells and can functionally support hematopoiesis. Overall, our study provides new insights into HE differentiation toward HSC and the role of AGM RUNX1+ niche cells in this process. Our expansive scRNA-seq datasets represents a powerful resource to investigate these processes further.


Asunto(s)
Embrión de Mamíferos/embriología , Hemangioblastos/citología , Hematopoyesis , Células Madre Hematopoyéticas/citología , Animales , Diferenciación Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Hemangioblastos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Mesonefro/citología , Mesonefro/embriología , Mesonefro/metabolismo , Ratones , Análisis de la Célula Individual , Transcriptoma , Pez Cebra
2.
EMBO Rep ; 22(3): e52164, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33590678

RESUMEN

The eukaryotic replisome is disassembled in each cell cycle, dependent upon ubiquitylation of the CMG helicase. Studies of Saccharomyces cerevisiae, Caenorhabditis elegans and Xenopus laevis have revealed surprising evolutionary diversity in the ubiquitin ligases that control CMG ubiquitylation, but regulated disassembly of the mammalian replisome has yet to be explored. Here, we describe a model system for studying the ubiquitylation and chromatin extraction of the mammalian CMG replisome, based on mouse embryonic stem cells. We show that the ubiquitin ligase CUL2LRR1 is required for ubiquitylation of the CMG-MCM7 subunit during S-phase, leading to disassembly by the p97 ATPase. Moreover, a second pathway of CMG disassembly is activated during mitosis, dependent upon the TRAIP ubiquitin ligase that is mutated in primordial dwarfism and mis-regulated in various cancers. These findings indicate that replisome disassembly in diverse metazoa is regulated by a conserved pair of ubiquitin ligases, distinct from those present in other eukaryotes.


Asunto(s)
ADN Helicasas , Replicación del ADN , Animales , Ciclo Celular/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Ratones , Componente 7 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 7 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Ubiquitinación , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
3.
Development ; 146(17)2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488508

RESUMEN

RUNX transcription factors orchestrate many different aspects of biology, including basic cellular and developmental processes, stem cell biology and tumorigenesis. In this Primer, we introduce the molecular hallmarks of the three mammalian RUNX genes, RUNX1, RUNX2 and RUNX3, and discuss the regulation of their activities and their mechanisms of action. We then review their crucial roles in the specification and maintenance of a wide array of tissues during embryonic development and adult homeostasis.


Asunto(s)
Subunidades alfa del Factor de Unión al Sitio Principal/genética , Subunidades alfa del Factor de Unión al Sitio Principal/metabolismo , Mamíferos/embriología , Mamíferos/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Sitios Genéticos , Hematopoyesis/fisiología , Homeostasis/fisiología , Humanos , Ratones , Neoplasias/metabolismo
4.
Development ; 145(5)2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29530939

RESUMEN

During ontogeny, hematopoietic stem and progenitor cells arise from hemogenic endothelium through an endothelial-to-hematopoietic transition that is strictly dependent on the transcription factor RUNX1. Although it is well established that RUNX1 is essential for the onset of hematopoiesis, little is known about the role of RUNX1 dosage specifically in hemogenic endothelium and during the endothelial-to-hematopoietic transition. Here, we used the mouse embryonic stem cell differentiation system to determine if and how RUNX1 dosage affects hemogenic endothelium differentiation. The use of inducible Runx1 expression combined with alterations in the expression of the RUNX1 co-factor CBFß allowed us to evaluate a wide range of RUNX1 levels. We demonstrate that low RUNX1 levels are sufficient and necessary to initiate an effective endothelial-to-hematopoietic transition. Subsequently, RUNX1 is also required to complete the endothelial-to-hematopoietic transition and to generate functional hematopoietic precursors. In contrast, elevated levels of RUNX1 are able to drive an accelerated endothelial-to-hematopoietic transition, but the resulting cells are unable to generate mature hematopoietic cells. Together, our results suggest that RUNX1 dosage plays a pivotal role in hemogenic endothelium maturation and the establishment of the hematopoietic system.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Endotelio Vascular/fisiología , Dosificación de Gen/fisiología , Hemangioblastos/fisiología , Hematopoyesis/genética , Células Madre Hematopoyéticas/fisiología , Animales , Diferenciación Celular/genética , Células Cultivadas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Regulación de la Expresión Génica , Ratones , Ratones Noqueados
5.
PLoS Genet ; 14(1): e1007127, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29300724

RESUMEN

In recent years, highly detailed characterization of adult bone marrow (BM) myeloid progenitors has been achieved and, as a result, the impact of somatic defects on different hematopoietic lineage fate decisions can be precisely determined. Fetal liver (FL) hematopoietic progenitor cells (HPCs) are poorly characterized in comparison, potentially hindering the study of the impact of genetic alterations on midgestation hematopoiesis. Numerous disorders, for example infant acute leukemias, have in utero origins and their study would therefore benefit from the ability to isolate highly purified progenitor subsets. We previously demonstrated that a Runx1 distal promoter (P1)-GFP::proximal promoter (P2)-hCD4 dual-reporter mouse (Mus musculus) model can be used to identify adult BM progenitor subsets with distinct lineage preferences. In this study, we undertook the characterization of the expression of Runx1-P1-GFP and P2-hCD4 in FL. Expression of P2-hCD4 in the FL immunophenotypic Megakaryocyte-Erythroid Progenitor (MEP) and Common Myeloid Progenitor (CMP) compartments corresponded to increased granulocytic/monocytic/megakaryocytic and decreased erythroid specification. Moreover, Runx1-P2-hCD4 expression correlated with several endogenous cell surface markers' expression, including CD31 and CD45, providing a new strategy for prospective identification of highly purified fetal myeloid progenitors in transgenic mouse models. We utilized this methodology to compare the impact of the deletion of either total RUNX1 or RUNX1C alone and to determine the fetal HPCs lineages most substantially affected. This new prospective identification of FL progenitors therefore raises the prospect of identifying the underlying gene networks responsible with greater precision than previously possible.


Asunto(s)
Linaje de la Célula/genética , Células Madre Hematopoyéticas/citología , Células Progenitoras Mieloides/citología , Animales , Médula Ósea/embriología , Diferenciación Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Modelos Animales de Enfermedad , Granulocitos/citología , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Hígado/citología , Hígado/embriología , Hígado/metabolismo , Megacariocitos/citología , Ratones , Ratones Transgénicos , Monocitos/citología , Estudios Prospectivos
6.
PLoS Comput Biol ; 15(11): e1007337, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31682597

RESUMEN

Gene expression governs cell fate, and is regulated via a complex interplay of transcription factors and molecules that change chromatin structure. Advances in sequencing-based assays have enabled investigation of these processes genome-wide, leading to large datasets that combine information on the dynamics of gene expression, transcription factor binding and chromatin structure as cells differentiate. While numerous studies focus on the effects of these features on broader gene regulation, less work has been done on the mechanisms of gene-specific transcriptional control. In this study, we have focussed on the latter by integrating gene expression data for the in vitro differentiation of murine ES cells to macrophages and cardiomyocytes, with dynamic data on chromatin structure, epigenetics and transcription factor binding. Combining a novel strategy to identify communities of related control elements with a penalized regression approach, we developed individual models to identify the potential control elements predictive of the expression of each gene. Our models were compared to an existing method and evaluated using the existing literature and new experimental data from embryonic stem cell differentiation reporter assays. Our method is able to identify transcriptional control elements in a gene specific manner that reflect known regulatory relationships and to generate useful hypotheses for further testing.


Asunto(s)
Diferenciación Celular/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Elementos Reguladores de la Transcripción/genética , Animales , Diferenciación Celular/fisiología , Cromatina/metabolismo , Bases de Datos Genéticas , Epigénesis Genética , Epigenómica , Regulación de la Expresión Génica/genética , Genoma , Macrófagos/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Miocitos Cardíacos/metabolismo , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo
7.
Semin Cell Dev Biol ; 63: 50-57, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27470491

RESUMEN

Cardiovascular development during embryogenesis involves complex changes in gene regulatory networks regulated by a variety of transcription factors. In this review we discuss the various reported roles of the SOXF factors: SOX7, SOX17 and SOX18 in cardiac, vascular and lymphatic development. SOXF factors have pleiotropic roles during these processes, and there is significant redundancy and functional compensation between SOXF family members. Despite this, evidence suggests that there is some specificity in the transcriptional programs they regulate which is necessary to control the differentiation and behaviour of endothelial subpopulations. Furthermore, SOXF factors appear to have an indirect role in regulating cardiac mesoderm specification and differentiation. Understanding how SOXF factors are regulated, as well as their downstream transcriptional target genes, will be important for unravelling their roles in cardiovascular development and related diseases.


Asunto(s)
Sistema Cardiovascular/embriología , Sistema Cardiovascular/metabolismo , Factores de Transcripción SOXF/metabolismo , Secuencia de Aminoácidos , Animales , Hemangioblastos/metabolismo , Humanos , Vasos Linfáticos/embriología , Vasos Linfáticos/metabolismo , Organogénesis/genética , Factores de Transcripción SOXF/química
8.
Development ; 143(23): 4341-4351, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27802172

RESUMEN

Endothelial to hematopoietic transition (EHT) is a dynamic process involving the shutting down of endothelial gene expression and switching on of hematopoietic gene transcription. Although the factors regulating EHT in hemogenic endothelium (HE) of the dorsal aorta have been relatively well studied, the molecular regulation of yolk sac HE remains poorly understood. Here, we show that SOX7 inhibits the expression of RUNX1 target genes in HE, while having no effect on RUNX1 expression itself. We establish that SOX7 directly interacts with RUNX1 and inhibits its transcriptional activity. Through this interaction we demonstrate that SOX7 hinders RUNX1 DNA binding as well as the interaction between RUNX1 and its co-factor CBFß. Finally, we show by single-cell expression profiling and immunofluorescence that SOX7 is broadly expressed across the RUNX1+ yolk sac HE population compared with SOX17. Collectively, these data demonstrate for the first time how direct protein-protein interactions between endothelial and hematopoietic transcription factors regulate contrasting transcriptional programs during HE differentiation and EHT.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Endotelio/citología , Hemangioblastos/citología , Factores de Transcripción SOXF/metabolismo , Saco Vitelino/citología , Animales , Diferenciación Celular , Células Cultivadas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Proteínas de Unión al ADN/antagonistas & inhibidores , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Femenino , Proteínas HMGB/metabolismo , Células Madre Hematopoyéticas/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción SOXF/genética , Transcripción Genética/fisiología
9.
Development ; 143(23): 4324-4340, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27802171

RESUMEN

The transmission of extracellular signals into the nucleus involves inducible transcription factors, but how different signalling pathways act in a cell type-specific fashion is poorly understood. Here, we studied the regulatory role of the AP-1 transcription factor family in blood development using embryonic stem cell differentiation coupled with genome-wide transcription factor binding and gene expression analyses. AP-1 factors respond to MAP kinase signalling and comprise dimers of FOS, ATF and JUN proteins. To examine genes regulated by AP-1 and to examine how it interacts with other inducible transcription factors, we abrogated its global DNA-binding activity using a dominant-negative FOS peptide. We show that FOS and JUN bind to and activate a specific set of vascular genes and that AP-1 inhibition shifts the balance between smooth muscle and hematopoietic differentiation towards blood. Furthermore, AP-1 is required for de novo binding of TEAD4, a transcription factor connected to Hippo signalling. Our bottom-up approach demonstrates that AP-1- and TEAD4-associated cis-regulatory elements form hubs for multiple signalling-responsive transcription factors and define the cistrome that regulates vascular and hematopoietic development by extrinsic signals.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/citología , Proteínas Musculares/metabolismo , Músculo Liso Vascular/citología , Factor de Transcripción AP-1/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción Activadores/metabolismo , Animales , Sitios de Unión/genética , Línea Celular , Proteínas de Unión al ADN/genética , Expresión Génica/genética , Perfilación de la Expresión Génica , Ratones , Músculo Liso Vascular/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción de Dominio TEA , Factor de Transcripción AP-1/antagonistas & inhibidores
10.
Blood ; 130(3): 271-284, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28490570

RESUMEN

RUNX1 is crucial for the regulation of megakaryocyte specification, maturation, and thrombopoiesis. Runx1 possesses 2 promoters: the distal P1 and proximal P2 promoters. The major protein isoforms generated by P1 and P2 are RUNX1C and RUNX1B, respectively, which differ solely in their N-terminal amino acid sequences. RUNX1C is the most abundantly expressed isoform in adult hematopoiesis, present in all RUNX1-expressing populations, including the cKit+ hematopoietic stem and progenitor cells. RUNX1B expression is more restricted, being highly expressed in the megakaryocyte lineage but downregulated during erythropoiesis. We generated a Runx1 P1 knock-in of RUNX1B, termed P1-MRIPV This mouse line lacks RUNX1C expression but has normal total RUNX1 levels, solely comprising RUNX1B. Using this mouse line, we establish a specific requirement for the P1-RUNX1C isoform in megakaryopoiesis, which cannot be entirely compensated for by RUNX1B overexpression. P1 knock-in megakaryocyte progenitors have reduced proliferative capacity and undergo increased cell death, resulting in thrombocytopenia. P1 knock-in premegakaryocyte/erythroid progenitors demonstrate an erythroid-specification bias, evident from increased erythroid colony-forming ability and decreased megakaryocyte output. At a transcriptional level, multiple erythroid-specific genes are upregulated and megakaryocyte-specific transcripts are downregulated. In addition, proapoptotic pathways are activated in P1 knock-in premegakaryocyte/erythroid progenitors, presumably accounting for the increased cell death in the megakaryocyte progenitor compartment. Unlike in the conditional adult Runx1 null models, megakaryocytic maturation is not affected in the P1 knock-in mice, suggesting that RUNX1B can regulate endomitosis and thrombopoiesis. Therefore, despite the high degree of structural similarity, RUNX1B and RUNX1C isoforms have distinct and specific roles in adult megakaryopoiesis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Células Progenitoras de Megacariocitos/metabolismo , Megacariocitos/metabolismo , ARN Mensajero/genética , Trombocitopenia/genética , Trombopoyesis/genética , Secuencia de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Muerte Celular , Linaje de la Célula/genética , Proliferación Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Citometría de Flujo , Regulación de la Expresión Génica , Humanos , Inmunofenotipificación , Células Progenitoras de Megacariocitos/patología , Megacariocitos/patología , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Trombocitopenia/metabolismo , Trombocitopenia/patología
12.
PLoS Genet ; 12(1): e1005814, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26808730

RESUMEN

The Core Binding Factor (CBF) protein RUNX1 is a master regulator of definitive hematopoiesis, crucial for hematopoietic stem cell (HSC) emergence during ontogeny. RUNX1 also plays vital roles in adult mice, in regulating the correct specification of numerous blood lineages. Akin to the other mammalian Runx genes, Runx1 has two promoters P1 (distal) and P2 (proximal) which generate distinct protein isoforms. The activities and specific relevance of these two promoters in adult hematopoiesis remain to be fully elucidated. Utilizing a dual reporter mouse model we demonstrate that the distal P1 promoter is broadly active in adult hematopoietic stem and progenitor cell (HSPC) populations. By contrast the activity of the proximal P2 promoter is more restricted and its upregulation, in both the immature Lineage- Sca1high cKithigh (LSK) and bipotential Pre-Megakaryocytic/Erythroid Progenitor (PreMegE) populations, coincides with a loss of erythroid (Ery) specification. Accordingly the PreMegE population can be prospectively separated into "pro-erythroid" and "pro-megakaryocyte" populations based on Runx1 P2 activity. Comparative gene expression analyses between Runx1 P2+ and P2- populations indicated that levels of CD34 expression could substitute for P2 activity to distinguish these two cell populations in wild type (WT) bone marrow (BM). Prospective isolation of these two populations will enable the further investigation of molecular mechanisms involved in megakaryocytic/erythroid (Mk/Ery) cell fate decisions. Having characterized the extensive activity of P1, we utilized a P1-GFP homozygous mouse model to analyze the impact of the complete absence of Runx1 P1 expression in adult mice and observed strong defects in the T cell lineage. Finally, we investigated how the leukemic fusion protein AML1-ETO9a might influence Runx1 promoter usage. Short-term AML1-ETO9a induction in BM resulted in preferential P2 upregulation, suggesting its expression may be important to establish a pre-leukemic environment.


Asunto(s)
Linaje de la Célula/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/biosíntesis , Hematopoyesis/genética , Células Madre Hematopoyéticas , Animales , Diferenciación Celular/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Megacariocitos/citología , Ratones , Regiones Promotoras Genéticas , Linfocitos T/metabolismo
13.
Development ; 142(19): 3307-20, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26293303

RESUMEN

The molecular mechanisms orchestrating early mesoderm specification are still poorly understood. In particular, how alternate cell fate decisions are regulated in nascent mesoderm remains mostly unknown. In the present study, we investigated both in vitro in differentiating embryonic stem cells, and in vivo in gastrulating embryos, the lineage specification of early mesodermal precursors expressing or not the Forkhead transcription factor FOXF1. Our data revealed that FOXF1-expressing mesoderm is derived from FLK1(+) progenitors and that in vitro this transcription factor is expressed in smooth muscle and transiently in endothelial lineages, but not in hematopoietic cells. In gastrulating embryos, FOXF1 marks most extra-embryonic mesoderm derivatives including the chorion, the allantois, the amnion and a subset of endothelial cells. Similarly to the in vitro situation, FOXF1 expression is excluded from the blood islands and blood cells. Further analysis revealed an inverse correlation between hematopoietic potential and FOXF1 expression in vivo with increased commitment toward primitive erythropoiesis in Foxf1-deficient embryos, whereas FOXF1-enforced expression in vitro was shown to repress hematopoiesis. Altogether, our data establish that during gastrulation, FOXF1 marks all posterior primitive streak extra-embryonic mesoderm derivatives with the remarkable exception of the blood lineage. Our study further suggests that this transcription factor is implicated in actively restraining the specification of mesodermal progenitors to hematopoiesis.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Factores de Transcripción Forkhead/metabolismo , Células Madre Hematopoyéticas/citología , Mesodermo/embriología , Línea Celular , Citometría de Flujo , Perfilación de la Expresión Génica , Técnicas de Transferencia de Gen , Humanos , Inmunohistoquímica , Análisis por Micromatrices , Plásmidos/genética
14.
Blood ; 136(7): 775-776, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32790854
15.
Adv Exp Med Biol ; 962: 65-81, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28299651

RESUMEN

RUNX transcription factors belong to a highly conserved class of transcriptional regulators which play various roles in the development of the majority of metazoans. In this review we focus on the founding member of the family, RUNX1, and its role in the transcriptional control of blood cell development in mammals. We summarize data showing that RUNX1 functions both as activator and repressor within a chromatin environment, a feature that requires its interaction with multiple other transcription factors and co-factors. Furthermore, we outline how RUNX1 works together with other factors to reshape the epigenetic landscape and the three-dimensional structure of gene loci within the nucleus. Finally, we review how aberrant forms of RUNX1 deregulate blood cell development and cause hematopoietic malignancies.


Asunto(s)
Células Sanguíneas/metabolismo , Células Sanguíneas/fisiología , Diferenciación Celular/fisiología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Animales , Cromatina/metabolismo , Neoplasias Hematológicas/metabolismo , Humanos , Factores de Transcripción/metabolismo , Transcripción Genética/genética
16.
EMBO J ; 31(22): 4318-33, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23064151

RESUMEN

Cell fate decisions during haematopoiesis are governed by lineage-specific transcription factors, such as RUNX1, SCL/TAL1, FLI1 and C/EBP family members. To gain insight into how these transcription factors regulate the activation of haematopoietic genes during embryonic development, we measured the genome-wide dynamics of transcription factor assembly on their target genes during the RUNX1-dependent transition from haemogenic endothelium (HE) to haematopoietic progenitors. Using a Runx1-/- embryonic stem cell differentiation model expressing an inducible Runx1 gene, we show that in the absence of RUNX1, haematopoietic genes bind SCL/TAL1, FLI1 and C/EBPß and that this early priming is required for correct temporal expression of the myeloid master regulator PU.1 and its downstream targets. After induction, RUNX1 binds to numerous de novo sites, initiating a local increase in histone acetylation and rapid global alterations in the binding patterns of SCL/TAL1 and FLI1. The acquisition of haematopoietic fate controlled by Runx1 therefore does not represent the establishment of a new regulatory layer on top of a pre-existing HE program but instead entails global reorganization of lineage-specific transcription factor assemblies.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Epigénesis Genética/fisiología , Hematopoyesis/fisiología , Acetilación , Animales , Secuencia de Bases , Línea Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Células Madre Embrionarias/fisiología , Epigénesis Genética/genética , Hematopoyesis/genética , Histonas/metabolismo , Ratones , Datos de Secuencia Molecular , Unión Proteica , Factores de Transcripción/fisiología
17.
Blood ; 124(11): e11-20, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25082880

RESUMEN

During ontogeny, the transcription factor RUNX1 governs the emergence of definitive hematopoietic cells from specialized endothelial cells called hemogenic endothelium (HE). The ultimate consequence of this endothelial-to-hematopoietic transition is the concomitant activation of the hematopoietic program and downregulation of the endothelial program. However, due to the rare and transient nature of the HE, little is known about the initial role of RUNX1 within this population. We, therefore, developed and implemented a highly sensitive DNA adenine methyltransferase identification-based methodology, including a novel data analysis pipeline, to map early RUNX1 transcriptional targets in HE cells. This novel transcription factor binding site identification protocol should be widely applicable to other low abundance cell types and factors. Integration of the RUNX1 binding profile with gene expression data revealed an unexpected early role for RUNX1 as a positive regulator of cell adhesion- and migration-associated genes within the HE. This suggests that RUNX1 orchestrates HE cell positioning and integration prior to the release of hematopoietic cells. Overall, our genome-wide analysis of the RUNX1 binding and transcriptional profile in the HE provides a novel comprehensive resource of target genes that will facilitate the precise dissection of the role of RUNX1 in early blood development.


Asunto(s)
Movimiento Celular/fisiología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Hematopoyesis/fisiología , Animales , Adhesión Celular/fisiología , Células Cultivadas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Células Endoteliales/citología , Endotelio Vascular/citología , Ratones , Ratones Noqueados
18.
Development ; 139(9): 1587-98, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22492353

RESUMEN

At early stages of vertebrate ontogeny, blood and endothelial cells develop from a common mesodermal progenitor, the haemangioblast. Upon haematopoietic commitment, the haemangioblast generates blood precursors through populations of endothelial cells with haemogenic properties. Although several transcription factors have been implicated in haemangioblast differentiation, the precise mechanisms governing cell fate decisions towards the generation of haemogenic endothelium precursors remain largely unknown. Under defined conditions, embryonic stem (ES) cells can be differentiated into haemangioblast-like progenitors that faithfully recapitulate early embryonic haematopoiesis. Here, we made use of mouse ES cells as a model system to understand the role of SOX7, a member of a large family of transcription factors involved in a wide range of developmental processes. During haemangioblast differentiation, SOX7 is expressed in haemogenic endothelium cells and is downregulated in nascent blood precursors. Gain-of-function assays revealed that the enforced expression of Sox7 in haemangioblast-derived blast colonies blocks further differentiation and sustains the expression of endothelial markers. Thus, to explore the transcriptional activity of SOX7, we focused on the endothelial-specific adhesion molecule VE-cadherin. Similar to SOX7, VE-cadherin is expressed in haemogenic endothelium and is downregulated during blood cell formation. We show that SOX7 binds and activates the promoter of VE-cadherin, demonstrating that this gene is a novel downstream transcriptional target of SOX7. Altogether, our findings suggest that SOX7 is involved in the transcriptional regulation of genes expressed in the haemogenic endothelium and provide new clues to decipher the molecular pathways that drive early embryonic haematopoiesis.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica/fisiología , Hemangioblastos/metabolismo , Hematopoyesis/fisiología , Factores de Transcripción SOXF/metabolismo , Animales , Antígenos CD/genética , Western Blotting , Cadherinas/genética , Inmunoprecipitación de Cromatina , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Hemangioblastos/citología , Hematopoyesis/genética , Luciferasas , Ratones , Regiones Promotoras Genéticas/genética , Factores de Transcripción SOXF/genética
19.
Stem Cells ; 32(6): 1591-601, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24307508

RESUMEN

Although inhibition of p16(INK4a) expression is critical to preserve the proliferative capacity of stem cells, the molecular mechanisms responsible for silencing p16(INK4a) expression remain poorly characterized. Here, we show that the histone acetyltransferase (HAT) monocytic leukemia zinc finger protein (MOZ) controls the proliferation of both hematopoietic and neural stem cells by modulating the transcriptional repression of p16(INK4a) . In the absence of the HAT activity of MOZ, expression of p16(INK4a) is upregulated in progenitor and stem cells, inducing an early entrance into replicative senescence. Genetic deletion of p16(INK4a) reverses the proliferative defect in both Moz(HAT) (-) (/) (-) hematopoietic and neural progenitors. Our results suggest a critical requirement for MOZ HAT activity to silence p16(INK4a) expression and to protect stem cells from early entrance into replicative senescence.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Células Madre Hematopoyéticas/citología , Histona Acetiltransferasas/metabolismo , Células-Madre Neurales/citología , Animales , Antígenos CD34/metabolismo , Ciclo Celular , Proliferación Celular , Separación Celular , Senescencia Celular , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Eliminación de Gen , Silenciador del Gen , Células Madre Hematopoyéticas/metabolismo , Ratones , Modelos Biológicos , Células-Madre Neurales/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Telencéfalo/citología , Regulación hacia Arriba/genética
20.
Trends Immunol ; 33(5): 215-23, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22365572

RESUMEN

Hematopoietic stem cells (HSCs) are capable of self-renewal and differentiation into all blood cell types. During adult life, they reside in the bone marrow in a quiescent state. By contrast, in the growing embryo hematopoiesis is sequentially found in several developmental niches. This review provides an overview of the still controversial contribution of each of these embryonic sites to the final pool of adult HSCs and discusses new insights into the cellular origin and the molecular regulation implicated in the generation of blood progenitor cells. A better understanding of HSC development during ontogeny is essential to develop new strategies to amplify HSCs or to generate them from embryonic stem cells or by somatic cell reprogramming.


Asunto(s)
Células Sanguíneas/citología , Diferenciación Celular , Embrión de Mamíferos/citología , Células Madre Hematopoyéticas/citología , Animales , Células Sanguíneas/metabolismo , Embrión de Mamíferos/metabolismo , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Humanos , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA