Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 21(1): 375, 2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34388962

RESUMEN

BACKGROUND: The lace plant (Aponogeton madagascariensis) is an aquatic monocot that develops leaves with uniquely formed perforations through the use of a developmentally regulated process called programmed cell death (PCD). The process of perforation formation in lace plant leaves is subdivided into several developmental stages: pre-perforation, window, perforation formation, perforation expansion and mature. The first three emerging "imperforate leaves" do not form perforations, while all subsequent leaves form perforations via developmentally regulated PCD. PCD is active in cells called "PCD cells" that do not retain the antioxidant anthocyanin in spaces called areoles framed by the leaf veins of window stage leaves. Cells near the veins called "NPCD cells" retain a red pigmentation from anthocyanin and do not undergo PCD. While the cellular changes that occur during PCD are well studied, the gene expression patterns underlying these changes and driving PCD during leaf morphogenesis are mostly unknown. We sought to characterize differentially expressed genes (DEGs) that mediate lace plant leaf remodelling and PCD. This was achieved performing gene expression analysis using transcriptomics and comparing DEGs among different stages of leaf development, and between NPCD and PCD cells isolated by laser capture microdissection. RESULTS: Transcriptomes were sequenced from imperforate, pre-perforation, window, and mature leaf stages, as well as PCD and NPCD cells isolated from window stage leaves. Differential expression analysis of the data revealed distinct gene expression profiles: pre-perforation and window stage leaves were characterized by higher expression of genes involved in anthocyanin biosynthesis, plant proteases, expansins, and autophagy-related genes. Mature and imperforate leaves upregulated genes associated with chlorophyll development, photosynthesis, and negative regulators of PCD. PCD cells were found to have a higher expression of genes involved with ethylene biosynthesis, brassinosteroid biosynthesis, and hydrolase activity whereas NPCD cells possessed higher expression of auxin transport, auxin signalling, aspartyl proteases, cysteine protease, Bag5, and anthocyanin biosynthesis enzymes. CONCLUSIONS: RNA sequencing was used to generate a de novo transcriptome for A. madagascariensis leaves and revealed numerous DEGs potentially involved in PCD and leaf remodelling. The data generated from this investigation will be useful for future experiments on lace plant leaf development and PCD in planta.


Asunto(s)
Alismatales/genética , Alismatales/fisiología , Apoptosis , Hojas de la Planta/fisiología , Alismatales/crecimiento & desarrollo , Antocianinas/biosíntesis , Apoptosis/genética , Pared Celular/enzimología , Regulación de la Expresión Génica de las Plantas , Células Vegetales , Reguladores del Crecimiento de las Plantas/fisiología , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , ARN de Planta , RNA-Seq , Factores de Transcripción/fisiología , Transcriptoma
2.
Am J Bot ; 107(4): 577-586, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32319093

RESUMEN

PREMISE: Lace plant (Aponogeton madagascariensis) leaves are remodeled via developmental programmed cell death (PCD) to produce perforations located equidistantly between longitudinal and transverse veins. Auxin has been implicated in other developmental PCD processes in plants; however, the role of auxin in perforation formation in lace plant is unknown. Here the role of auxin in developmental PCD in lace plant was studied using two auxin inhibitors N-1-naphthylphthalamic acid (NPA), an auxin transport inhibitor, and auxinole, a potent auxin antagonist. METHODS: Sterile cultures of lace plants were propagated and treated with NPA or auxinole. Leaf length, leaf width, and number of perforations were then analyzed. Vein patterning and perforation area were further examined in NPA-treated plants. Downstream PCD transduction events were investigated via spectrophotometric assays, histochemical staining, and immuno-probing. RESULTS: Lace plants treated with NPA or auxinole produced leaves with fewer perforations compared to their respective controls. Although NPA treatment was insufficient to completely alter vein patterning, NPA-treated leaves did have significantly more atypical areoles compared to control leaves. Events involved in perforation formation in lace plant leaves were altered following treatment with NPA, including anthocyanin production, reactive oxygen species (ROS) accumulation, and the release of mitochondrial cytochrome c. CONCLUSIONS: Our results indicated that inhibition of auxin signaling disrupts several downstream features of the lace plant PCD signaling cascade and results in fewer or no perforations. Therefore, we concluded that auxin signaling is important for developmentally regulated PCD in lace plant leaves.


Asunto(s)
Alismatales , Apoptosis , Ácidos Indolacéticos , Mitocondrias , Hojas de la Planta
3.
Planta ; 246(1): 133-147, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28389868

RESUMEN

MAIN CONCLUSION: Antioxidants and reactive oxygen species are integral for programmed cell death signaling during perforation formation in the lace plant ( Aponogeton madagascariensis ). The lace plant is an excellent model system for studying developmentally regulated programmed cell death (PCD). During early lace plant leaf development, PCD systematically deletes cells resulting in a perforated leaf morphology that is unique in planta. A distinct feature in young lace plant leaves is an abundance of anthocyanins, which have antioxidant properties. The first sign of PCD induction is the loss of anthocyanin pigmentation in cells that are targeted for destruction, which results in a visible gradient of cell death. The cellular dynamics and time course of lace plant PCD are well documented; however, the signals involved in the pathway remain elusive. This study investigates the roles of antioxidants and ROS in developmental PCD signaling during lace plant perforation formation. The involvement of antioxidants and ROS in the pathway was determined using a variety of techniques including pharmacological whole plant experimentation, long-term live cell imaging, the 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid anti-radical activity assay, and western blot analysis. Results indicate that antioxidants and ROS are key regulators of PCD during the remodelling of lace plant leaves.


Asunto(s)
Alismatales/metabolismo , Antioxidantes/metabolismo , Hojas de la Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Alismatales/genética , Antocianinas/metabolismo , Apoptosis/genética , Apoptosis/fisiología , Muerte Celular/genética , Muerte Celular/fisiología , Hojas de la Planta/genética
4.
PLoS One ; 18(2): e0281668, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36795694

RESUMEN

Aponogeton madagascariensis, commonly known as the lace plant, produces leaves that form perforations by programmed cell death (PCD). Leaf development is divided into several stages beginning with "pre-perforation" furled leaves enriched with red pigmentation from anthocyanins. The leaf blade is characterized by a series of grids known as areoles bounded by veins. As leaves develop into the "window stage", anthocyanins recede from the center of the areole towards the vasculature creating a gradient of pigmentation and cell death. Cells in the middle of the areole that lack anthocyanins undergo PCD (PCD cells), while cells that retain anthocyanins (non-PCD cells) maintain homeostasis and persist in the mature leaf. Autophagy has reported roles in survival or PCD promotion across different plant cell types. However, the direct involvement of autophagy in PCD and anthocyanin levels during lace plant leaf development has not been determined. Previous RNA sequencing analysis revealed the upregulation of autophagy-related gene Atg16 transcripts in pre-perforation and window stage leaves, but how Atg16 affects PCD in lace plant leaf development is unknown. In this study, we investigated the levels of Atg16 in lace plant PCD by treating whole plants with either an autophagy promoter rapamycin or inhibitors concanamycin A (ConA) or wortmannin. Following treatments, window and mature stage leaves were harvested and analyzed using microscopy, spectrophotometry, and western blotting. Western blotting showed significantly higher Atg16 levels in rapamycin-treated window leaves, coupled with lower anthocyanin levels. Wortmannin-treated leaves had significantly lower Atg16 protein and higher anthocyanin levels compared to the control. Mature leaves from rapamycin-treated plants generated significantly fewer perforations compared to control, while wortmannin had the opposite effect. However, ConA treatment did not significantly change Atg16 levels, nor the number of perforations compared to the control, but anthocyanin levels did increase significantly in window leaves. We propose autophagy plays a dual role in promoting cell survival in NPCD cells by maintaining optimal anthocyanin levels and mediating a timely cell death in PCD cells in developing lace plant leaves. How autophagy specifically affects anthocyanin levels remained unexplained.


Asunto(s)
Alismatales , Antocianinas , Antocianinas/metabolismo , Wortmanina , Apoptosis/fisiología , Alismatales/fisiología , Hojas de la Planta/metabolismo , Autofagia , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Front Plant Sci ; 10: 1198, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31695708

RESUMEN

The lace plant (Aponogeton madagascariensis) is an aquatic monocot that utilizes programmed cell death (PCD) to form perforations throughout its mature leaves as part of normal development. The lace plant is an emerging model system representing a unique form of developmental PCD. The role of autophagy in lace plant PCD was investigated using live cell imaging, transmission electron microscopy (TEM), immunolocalization, and in vivo pharmacological experimentation. ATG8 immunostaining and acridine orange staining revealed that autophagy occurs in both healthy and dying cells. Autophagosome-like vesicles were also found in healthy and dying cells through ultrastructural analysis with TEM. Following autophagy modulation, there was a noticeable increase in vesicles and vacuolar aggregates. A novel cell death assay utilizing lace plant leaves revealed that autophagy enhancement with rapamycin significantly decreased cell death rates compared to the control, whereas inhibition of autophagosome formation with wortmannin or blocking the degradation of cargoes with concanamycin A had an opposite effect. Although autophagy modulation significantly affected cell death rates in cells that are destined to die, neither the promotion nor inhibition of autophagy in whole plants had a significant effect on the number of perforations formed in lace plant leaves. Our data indicate that autophagy predominantly contributes to cell survival, and we found no clear evidence for its direct involvement in the induction of developmental PCD during perforation formation in lace plant leaves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA