Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(11): 7690-7697, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38442013

RESUMEN

The rational design of crystalline clusters with adjustable compositions and dimensions is highly sought after but quite challenging as it is important to understand their structural evolution processes and to systematically establish structure-property relationships. Herein, a family of organotin-based sulfidometalate supertetrahedral clusters has been prepared via mixed metal and organotin strategies at low temperatures (60-120 °C). By engineering the metal composition, we can effectively control the size of the clusters, which ranges from 8 to 35, accompanied by variable configurations: P1-[(RSn)4M4S13], T3-[(RSn)4In4M2S16] (R = nbutyl-Bu and phenyl-Ph; M = Cd, Zn, and Mn), T4-[(BuSn)4In13Cu3S31], truncated P2, viz. TP2-[(BuSn)6In10Cu6S31], and even T5-[(BuSn)4In22Zn6Cu3S52], all of which are the largest organometallic supertetrahedral clusters known to date. Of note, the arylstannane approach plays a critical role in regulating the peripheral ligands and further enriching geometric structures of the supertetrahedral clusters. This is demonstrated by the formation of tin-oxysulfide clusters, such as T3-[(RSn)4Sn6O4S16] (R = Bu, Ph, and benzyl = Be) and its variants, truncated T3, viz., TT3-[(BuSn)6Sn3O4S13] and augmented T3, viz., T3-[(Bu3SnS)4Sn6O4S16]. Especially, two extraordinary truncated clusters break the tetrahedral symmetry observed in typical supertetrahedral clusters, further substantiating the advantages offered by the arylstannane approach in expanding cluster chemistry. These organometallic supertetrahedral clusters are highly soluble and stable in common solvents. Additionally, they have tunable third-order nonlinear optical behaviors by controlling the size, heterometallic combination, organic modification, and intercluster interaction.

2.
Dalton Trans ; 51(7): 2660-2663, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35112694

RESUMEN

Four isomorphic P2 chalcogenide clusters named [Sn11In9Cu6S44]·11(H+DBU) (1) (DBU = 1,8-diazabicyclo[5.4.0] undec-7-ene), [Sn10In10Cu6Se44]·6(H22+DMAPA)·2(DMAPA)·9EG (2) (DMAPA = 3-dimethylaminopropylamine, EG = ethylene glycol), [Sn10In10Cu6S40O4]·6[H22+PMDETA]·10EG (3) (PMDETA = pentamethyldiethylenetriamine), [Sn10Ga10Cu6S40O4]·6(H22+DMAPA)·7EG (4) have been isolated via organotin precursor and mixed-metal strategy. These clusters exhibit excellent solubility in organic solvents. The continuous-regulation of optical band and optical limiting performance have been realized through precise controlled substituting engineering of cationic and anionic elements.

3.
Chem Commun (Camb) ; 56(60): 8388-8391, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32573642

RESUMEN

Two crystalline salts, T3-SnOX-MTN (X = S/Se, MTN denotes a defined zeotype), both spatially assembled in an MTN net, have been fabricated. This was achieved by interlinking the isolated tin-oxychalcogenide tetrahedrally shaped clusters of T3-[Sn10O8X16]8- (X = S/Se) through coulombic interactions with protonated organic amine templates. T3-SnOX-MTN (X = S/Se), with 74.1/76.5 Å cubic unit-cell axial-lengths, have a proton-conductivity of over 10-3 S cm-1 under 98% relative humidity at 50 °C.

4.
Chem Commun (Camb) ; 55(74): 11083-11086, 2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31460533

RESUMEN

We report, herein, a diamond-like oxysulfide framework, 3D-T4-SnOS, based on the largest supertetrahedral cluster of Sn4+ ions, i.e. [Sn20O10S34]. The framework remains intact in aqueous solution over a pH range between 1 and 14, and has a narrower optical bandgap, red-shifted fluorescence emission, and an enhanced photoelectric response compared to that of the smaller version, 2D-T3-SnOS, which has a building unit of supertetrahedral [Sn10O4S20].

5.
Chem Commun (Camb) ; 55(17): 2497-2500, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30741284

RESUMEN

We report herein a series of lanthanide sulfate-carboxylpyrazolate frameworks based on double cuboid cavities that are highly hot-water stable, and have room-temperature proton conductivity of over 10-3 S cm-1 at 97% relative humidity without any appreciable loss of performance for at least three recycling times, ranking among the best lanthanide-based coordination frameworks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA