Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 24(12): e57164, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37965920

RESUMEN

A high-salt diet (HSD) elicits sustained sterile inflammation and worsens tissue injury. However, how this occurs after stroke, a leading cause of morbidity and mortality, remains unknown. Here, we report that HSD impairs long-term brain recovery after intracerebral hemorrhage, a severe form of stroke, despite salt withdrawal prior to the injury. Mechanistically, HSD induces innate immune priming and training in hematopoietic stem and progenitor cells (HSPCs) by downregulation of NR4a family and mitochondrial oxidative phosphorylation. This training compromises alternative activation of monocyte-derived macrophages (MDMs) without altering the initial inflammatory responses of the stroke brain. Healthy mice transplanted with bone marrow from HSD-fed mice retain signatures of reduced MDM reparative functions, further confirming a persistent form of innate immune memory that originates in the bone marrow. Loss of NR4a1 in macrophages recapitulates HSD-induced negative impacts on stroke outcomes while gain of NR4a1 enables stroke recovery in HSD animals. Together, we provide the first evidence that links HSD-induced innate immune memory to the acquisition of persistent dysregulated inflammatory responses and unveils NR4a1 as a potential therapeutic target.


Asunto(s)
Accidente Cerebrovascular , Inmunidad Entrenada , Ratones , Animales , Macrófagos , Inflamación , Cloruro de Sodio Dietético/efectos adversos , Dieta , Inmunidad Innata
2.
BMC Bioinformatics ; 24(1): 474, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097965

RESUMEN

With new advances in next generation sequencing (NGS) technology at reduced costs, research on bacterial genomes in the environment has become affordable. Compared to traditional methods, NGS provides high-throughput sequencing reads and the ability to identify many species in the microbiome that were previously unknown. Numerous bioinformatics tools and algorithms have been developed to conduct such analyses. However, in order to obtain biologically meaningful results, the researcher must select the proper tools and combine them to construct an efficient pipeline. This complex procedure may include tens of tools, each of which require correct parameter settings. Furthermore, an NGS data analysis involves multiple series of command-line tools and requires extensive computational resources, which imposes a high barrier for biologists and clinicians to conduct NGS analysis and even interpret their own data. Therefore, we established a public gut microbiome database, which we call Twnbiome, created using healthy subjects from Taiwan, with the goal of enabling microbiota research for the Taiwanese population. Twnbiome provides users with a baseline gut microbiome panel from a healthy Taiwanese cohort, which can be utilized as a reference for conducting case-control studies for a variety of diseases. It is an interactive, informative, and user-friendly database. Twnbiome additionally offers an analysis pipeline, where users can upload their data and download analyzed results. Twnbiome offers an online database which non-bioinformatics users such as clinicians and doctors can not only utilize to access a control set of data, but also analyze raw data with a few easy clicks. All results are customizable with ready-made plots and easily downloadable tables. Database URL: http://twnbiome.cgm.ntu.edu.tw/ .


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Biología Computacional/métodos , Algoritmos , Bases de Datos Factuales , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Programas Informáticos
3.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34368845

RESUMEN

In this study, we proposed a deep learning (DL) model for classifying individuals from mixtures of DNA samples using 27 short tandem repeats and 94 single nucleotide polymorphisms obtained through massively parallel sequencing protocol. The model was trained/tested/validated with sequenced data from 6 individuals and then evaluated using mixtures from forensic DNA samples. The model successfully identified both the major and the minor contributors with 100% accuracy for 90 DNA mixtures, that were manually prepared by mixing sequence reads of 3 individuals at different ratios. Furthermore, the model identified 100% of the major contributors and 50-80% of the minor contributors in 20 two-sample external-mixed-samples at ratios of 1:39 and 1:9, respectively. To further demonstrate the versatility and applicability of the pipeline, we tested it on whole exome sequence data to classify subtypes of 20 breast cancer patients and achieved an area under curve of 0.85. Overall, we present, for the first time, a complete pipeline, including sequencing data processing steps and DL steps, that is applicable across different NGS platforms. We also introduced a sliding window approach, to overcome the sequence length variation problem of sequencing data, and demonstrate that it improves the model performance dramatically.


Asunto(s)
ADN/genética , Aprendizaje Profundo , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Polimorfismo de Nucleótido Simple
4.
Nat Immunol ; 12(2): 144-50, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21170027

RESUMEN

Transcription factor NF-κB and its activating kinase IKKß are associated with inflammation and are believed to be critical for innate immunity. Despite the likelihood of immune suppression, pharmacological blockade of IKKß-NF-κB has been considered as a therapeutic strategy. However, we found neutrophilia in mice with inducible deletion of IKKß (Ikkß(Δ) mice). These mice had hyperproliferative granulocyte-macrophage progenitors and pregranulocytes and a prolonged lifespan of mature neutrophils that correlated with the induction of genes encoding prosurvival molecules. Deletion of interleukin 1 receptor 1 (IL-1R1) in Ikkß(Δ) mice normalized blood cellularity and prevented neutrophil-driven inflammation. However, Ikkß(Δ)Il1r1(-/-) mice, unlike Ikkß(Δ) mice, were highly susceptible to bacterial infection, which indicated that signaling via IKKß-NF-κB or IL-1R1 can maintain antimicrobial defenses in each other's absence, whereas inactivation of both pathways severely compromises innate immunity.


Asunto(s)
Infecciones Bacterianas/inmunología , Células Progenitoras de Granulocitos y Macrófagos/metabolismo , Quinasa I-kappa B/metabolismo , Interleucina-1beta/metabolismo , Neutrófilos/metabolismo , Animales , Recuento de Células , Procesos de Crecimiento Celular/genética , Supervivencia Celular/genética , Células Cultivadas , Susceptibilidad a Enfermedades , Células Progenitoras de Granulocitos y Macrófagos/inmunología , Células Progenitoras de Granulocitos y Macrófagos/patología , Quinasa I-kappa B/genética , Quinasa I-kappa B/inmunología , Inmunidad Innata/genética , Interleucina-1beta/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis por Micromatrices , Neutrófilos/inmunología , Neutrófilos/patología , Receptores Tipo I de Interleucina-1/genética , Regulación hacia Arriba/genética
5.
Cancer Cell Int ; 23(1): 45, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899354

RESUMEN

BACKGROUND: Breast cancer is a prevalent disease in women, with high prevalence worldwide. The hypoxic microenvironment of solid tumors develops during the progress of carcinogenesis and leads to greater malignancy and treatment resistance. Recently, accumulating evidence indicates that non-coding RNAs, such as circular RNAs (circRNAs), play a pivotal role in altering cellular functions. However, the underlying mechanisms of circRNAs in breast cancer are still unclear. Therefore, the purpose of this study was to investigate the role of a tumor-suppressive circRNA, circAAGAB, in breast cancer by assuming down-regulation of circAAGAB under hypoxia and the properties of a tumor suppressor. METHODS: Firstly, circAAGAB was identified from expression profiling by next generation sequencing. Next, the stability of circAAGAB increased by interacting with the RNA binding protein FUS. Moreover, cellular and nuclear fractionation showed that most circAAGAB resided in the cytoplasm and that it up-regulated KIAA1522, NKX3-1, and JADE3 by sponging miR-378 h. Lastly, the functions of circAAGAB were explored by identifying its down-stream genes using Affymetrix microarrays and validated by in vitro assays. RESULTS: The results showed that circAAGAB reduced cell colony formation, cell migration, and signaling through p38 MAPK pathway, as well as increased radiosensitivity. CONCLUSION: These findings suggest that the oxygen-responsive circAAGAB acts as a tumor suppressor in breast cancer, and may contribute to the development of a more specific therapeutic regimen for breast cancer.

6.
J Biomed Inform ; 143: 104423, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37308034

RESUMEN

OBJECTIVE: Genotype imputation is a commonly used technique that infers un-typed variants into a study's genotype data, allowing better identification of causal variants in disease studies. However, due to overrepresentation of Caucasian studies, there's a lack of understanding of genetic basis of health-outcomes in other ethnic populations. Therefore, facilitating imputation of missing key-predictor-variants that can potentially improve a risk health-outcome prediction model, specifically for Asian ancestry, is of utmost relevance. METHODS: We aimed to construct an imputation and analysis web-platform, that primarily facilitates, but is not limited to genotype imputation on East-Asians. The goal is to provide a collaborative imputation platform for researchers in the public domain towards rapidly and efficiently conducting accurate genotype imputation. RESULTS: We present an online genotype imputation platform, Multi-ethnic Imputation System (MI-System) (https://misystem.cgm.ntu.edu.tw/), that offers users 3 established pipelines, SHAPEIT2-IMPUTE2, SHAPEIT4-IMPUTE5, and Beagle5.1 for conducting imputation analyses. In addition to 1000 Genomes and Hapmap3, a new customized Taiwan Biobank (TWB) reference panel, specifically created for Taiwanese-Chinese ancestry is provided. MI-System further offers functions to create customized reference panels to be used for imputation, conduct quality control, split whole genome data into chromosomes, and convert genome builds. CONCLUSION: Users can upload their genotype data and perform imputation with minimum effort and resources. The utility functions further can be utilized to preprocess user uploaded data with easy clicks. MI-System potentially contributes to Asian-population genetics research, while eliminating the requirement for high performing computational resources and bioinformatics expertise. It will enable an increased pace of research and provide a knowledge-base for genetic carriers of complex diseases, therefore greatly enhancing patient-driven research. STATEMENT OF SIGNIFICANCE: Multi-ethnic Imputation System (MI-System), primarily facilitates, but is not limited to, imputation on East-Asians, through 3 established prephasing-imputation pipelines, SHAPEIT2-IMPUTE2, SHAPEIT4-IMPUTE5, and Beagle5.1, where users can upload their genotype data and perform imputation and other utility functions with minimum effort and resources. A new customized Taiwan Biobank (TWB) reference panel, specifically created for Taiwanese-Chinese ancestry is provided. Utility functions include (a) create customized reference panels, (b) conduct quality control, (c) split whole genome data into chromosomes, and (d) convert genome builds. Users can also combine 2 reference panels using the system and use combined panels as reference to conduct imputation using MI-System.


Asunto(s)
Genética de Población , Genoma , Humanos , Frecuencia de los Genes , Genotipo , Computadores , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple
7.
J Formos Med Assoc ; 122(10): 1050-1060, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37085387

RESUMEN

BACKGROUND/PURPOSE: The small retinal vessels reflect cerebral microcirculation and its fractal dimension (Df), representing the complexity of the retinal microcirculation. However, the connection between retinal circulation and cognitive function lacked consistent and longitudinal evidence. This study aimed to explore the association between retinal vascular complexity and cognitive impairment over time in non-demented community-dwelling older adults. METHODS: This four-year prospective cohort study (2015-2019) is part of the ongoing Taiwan Initiative for Geriatric Epidemiological Research (TIGER, 2011 to present). Of the 434 older adults (age >65) recruited, 207 participants were included for analysis. The retinal vascular Df was assessed by baseline images from fundus photography (2015-2017). Global (Montreal Cognitive Assessment-Taiwanese version, MoCA-T) and domain-specific cognition were assessed at the baseline and 2-year follow-up (2017-2019). The multivariable linear regression models and generalized linear mixed models were used to evaluate the association of Df with cognitive decline/impairment over time. RESULTS: Decreased left retinal vascular complexity was associated with poor attention performance (ß = -0.40). As follow-up time increased, decreased vascular complexity was associated with poor memory performance (right: ß = -0.25; left: ß = -0.19), and decreased right vascular complexity was associated with poor attention performance (ß = -0.18). CONCLUSION: Low retinal vascular complexity of the right or left eye may be differentially associated with cognitive domains in community-dwelling older adults over two years. The retinal vascular Df of either eye may be served as a screening tool for detecting cognitive impairment in the preclinical phase of dementia.


Asunto(s)
Disfunción Cognitiva , Fractales , Humanos , Anciano , Estudios Prospectivos , Vida Independiente , Cognición , Disfunción Cognitiva/epidemiología
8.
BMC Bioinformatics ; 20(1): 239, 2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-31088348

RESUMEN

BACKGROUND: With advancements in high-throughput technologies, the cost of obtaining expression profiles of both mRNA and microRNA in the same individual has substantially decreased. Integrated analysis of these profiles can help to elucidate the functional effects of RNA expression in complex diseases, such as cancer. However, fundamental discrepancies are observed in the results from microRNA-mRNA target gene prediction algorithms, and few packages can be used to analyze microRNA and mRNA expression levels simultaneously. RESULTS: To address these issues, an R package, anamiR, was developed. A total of 10 experimental/prediction databases were integrated. Two analytical functions are provided in anamiR, including the single marker test and functional gene set enrichment analysis, and several parameters can be changed by users. Here we demonstrate the potential application of the anamiR package to 2 publicly available microarray datasets. CONCLUSION: The anamiR package is effective for an integrated analysis of both RNA and microRNA profiles. By characterizing biological functions and signaling pathways, this package helps identify dysregulated genes/miRNAs from biological and medical experiments. The source code and manual of the anamiR package are freely available at https://bioconductor.org/packages/release/bioc/html/anamiR.html .


Asunto(s)
Perfilación de la Expresión Génica/métodos , MicroARNs/genética , Algoritmos , Humanos
9.
Carcinogenesis ; 40(7): 883-892, 2019 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-30576425

RESUMEN

Esophageal cancer is one of the leading causes of cancer death in the male population of Eastern Asia. In addition, esophageal squamous cell carcinoma (ESCC) is the major type of esophageal cancer among the world. Owing to the poor overall 5-year survival rate, novel effective treatment strategies are needed. MicroRNAs are important gene regulators that are dysregulated in many cancer types. In our previous study, we applied next-generation sequencing to demonstrate that miR-338-5p was downregulated in the tumor tissue of patients with versus without recurrence. In this study, we further studied the roles of miR-338-5p in ESCC. The expression of endogenous miR-338-5p was at lower levels in ESCC cells compared with normal cells. Functional assays showed that miR-338-5p reduced cell proliferation, colony formation, migration and cisplatin resistance in an ESCC cell line, CE-81T. Potential target genes of miR-338-5p were identified by microarray and prediction tools, and 31 genes were selected. Among these, Fermitin family homolog 2 (FERMT2) plays an oncogenic role in ESCC, so it was chosen for further study. Luciferase assays showed the direct binding between miR-338-5p and the 3' untranslated region of FERMT2. Silencing of FERMT2 inhibited cell proliferation, colony formation, migration and cisplatin resistance. Pathway analysis revealed that the integrin-linked protein kinase signaling pathway, in which FERMT2 participates, was significantly affected by a miR-338-5p mimic. Our results suggest that miR-338-5p may play an antioncogenic role in ESCC via repressing FERMT2.


Asunto(s)
Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Proteínas de la Membrana/genética , MicroARNs/metabolismo , Proteínas de Neoplasias/genética , Regiones no Traducidas 3'/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Cisplatino/uso terapéutico , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/patología , Regulación Neoplásica de la Expresión Génica , Humanos
10.
BMC Cancer ; 19(1): 796, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409307

RESUMEN

BACKGROUND: Histology is a traditional way to classify subtypes of thymoma, because of low cost and convenience. Yet, due to the diverse morphology of thymoma, this method increases the complexity of histopathologic classification, and requires experienced experts to perform correct diagnosis. Therefore, in this study, we developed an alternative method by identifying protein biomarkers in order to assist clinical practitioners to make right classification of thymoma subtypes. METHODS: In total, 204 differentially expressed proteins in three subtypes of thymoma, AB, B2, and B3, were identified using mass spectrometry. Pathway analysis showed that the differentially expressed proteins in the three subtypes were involved in activation-related, signaling transduction-related and complement system-related pathways. To predict the subtypes of thymoma using the identified protein signatures, a support vector machine algorithm was used. Leave-one-out cross validation methods and receiver operating characteristic analysis were used to evaluate the predictive performance. RESULTS: The mean accuracy rates were > 80% and areas under the curve were ≧0.93 across these three subtypes. Especially, subtype B3 had the highest accuracy rate (96%) and subtype AB had the greatest area under the curve (0.99). One of the differentially expressed proteins COL17A2 was further validated using immunohistochemistry. CONCLUSIONS: In summary, we identified specific protein signatures for accurately classifying subtypes of thymoma, which could facilitate accurate diagnosis of thymoma patients.


Asunto(s)
Proteoma , Proteómica , Timoma/diagnóstico , Timoma/metabolismo , Adulto , Anciano , Biología Computacional/métodos , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Estadificación de Neoplasias , Proteómica/métodos , Curva ROC , Sensibilidad y Especificidad , Máquina de Vectores de Soporte , Timoma/genética , Transcriptoma
11.
Analyst ; 143(6): 1367-1377, 2018 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-29423467

RESUMEN

In this study, we developed an automated microfluidic DNA microarray (AMDM) platform for point mutation detection of genetic variants in inherited arrhythmic diseases. The platform allows for automated and programmable reagent sequencing under precise conditions of hybridization flow and temperature control. It is composed of a commercial microfluidic control system, a microfluidic microarray device, and a temperature control unit. The automated and rapid hybridization process can be performed in the AMDM platform using Cy3 labeled oligonucleotide exons of SCN5A genetic DNA, which produces proteins associated with sodium channels abundant in the heart (cardiac) muscle cells. We then introduce a graphene oxide (GO)-assisted DNA microarray hybridization protocol to enable point mutation detection. In this protocol, a GO solution is added after the staining step to quench dyes bound to single-stranded DNA or non-perfectly matched DNA, which can improve point mutation specificity. As proof-of-concept we extracted the wild-type and mutant of exon 12 and exon 17 of SCN5A genetic DNA from patients with long QT syndrome or Brugada syndrome by touchdown PCR and performed a successful point mutation discrimination in the AMDM platform. Overall, the AMDM platform can greatly reduce laborious and time-consuming hybridization steps and prevent potential contamination. Furthermore, by introducing the reciprocating flow into the microchannel during the hybridization process, the total assay time can be reduced to 3 hours, which is 6 times faster than the conventional DNA microarray. Given the automatic assay operation, shorter assay time, and high point mutation discrimination, we believe that the AMDM platform has potential for low-cost, rapid and sensitive genetic testing in a simple and user-friendly manner, which may benefit gene screening in medical practice.


Asunto(s)
Arritmias Cardíacas/genética , Técnicas Analíticas Microfluídicas , Análisis de Secuencia por Matrices de Oligonucleótidos , Arritmias Cardíacas/diagnóstico , Análisis Mutacional de ADN , Humanos , Canal de Sodio Activado por Voltaje NAV1.5/genética , Hibridación de Ácido Nucleico , Oligonucleótidos , Mutación Puntual
12.
RNA Biol ; 15(12): 1487-1498, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30497328

RESUMEN

Hypoxia plays a crucial role in the aggressiveness of solid tumors by driving multiple signaling pathways. Recently, long non-coding RNA (lncRNA) has been reported to promote or inhibit tumor aggressiveness by regulating gene expression. Previous studies in our laboratory found that the lncRNA NDRG1-OT1 is significantly up-regulated under hypoxia and inhibits its target gene NDRG1 at both the mRNA and protein levels. At the protein level, NDRG1-OT1 increases NDRG1 degradation via ubiquitin-mediated proteolysis. However, the repressive mechanism of NDRG1 at the RNA level is still unknown. Therefore, the purpose of this study was to study how NDRG1-OT1 transcriptionally regulates its target gene NDRG1. Luciferase reporter assays showed that NDRG1-OT1 decreased NDRG1 promoter activities. Mass spectrometry, bioinformatics tools, genetic manipulation, and immunoblotting were used to identify the interacting proteins. Surprisingly, different fragments of NDRG1-OT1 had opposite effects on NDRG1. The first quarter fragment (1-149 nt) of NDRG1-OT1 had no effect on the NDRG1 promoter; the second quarter fragment (150-263 nt) repressed NDRG1 by increasing the binding affinity of HNRNPA1; the third quarter fragment (264-392 nt) improved NDRG1 promoter activity by recruiting HIF-1α; the fourth quarter fragment (393-508 nt) down-regulated NDRG1 promoter activity via down-regulation of KHSRP under hypoxia. In summary, we have found a novel mechanism by which different fragments of the same lncRNA can cause opposite effects within the same target gene.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/genética , Hipoxia/genética , Péptidos y Proteínas de Señalización Intracelular/genética , ARN Largo no Codificante/genética , Transcripción Genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Genes Reporteros , Humanos , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Unión Proteica , ARN Largo no Codificante/química , Proteínas de Unión al ARN/genética , Transactivadores/genética
13.
BMC Bioinformatics ; 18(1): 35, 2017 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-28088185

RESUMEN

BACKGROUND: With the advancement in high-throughput technologies, researchers can simultaneously investigate gene expression and copy number alteration (CNA) data from individual patients at a lower cost. Traditional analysis methods analyze each type of data individually and integrate their results using Venn diagrams. Challenges arise, however, when the results are irreproducible and inconsistent across multiple platforms. To address these issues, one possible approach is to concurrently analyze both gene expression profiling and CNAs in the same individual. RESULTS: We have developed an open-source R/Bioconductor package (iGC). Multiple input formats are supported and users can define their own criteria for identifying differentially expressed genes driven by CNAs. The analysis of two real microarray datasets demonstrated that the CNA-driven genes identified by the iGC package showed significantly higher Pearson correlation coefficients with their gene expression levels and copy numbers than those genes located in a genomic region with CNA. Compared with the Venn diagram approach, the iGC package showed better performance. CONCLUSION: The iGC package is effective and useful for identifying CNA-driven genes. By simultaneously considering both comparative genomic and transcriptomic data, it can provide better understanding of biological and medical questions. The iGC package's source code and manual are freely available at https://www.bioconductor.org/packages/release/bioc/html/iGC.html .


Asunto(s)
Variaciones en el Número de Copia de ADN , Perfilación de la Expresión Génica/métodos , Expresión Génica , Genoma , Humanos , Programas Informáticos , Transcriptoma
14.
Mol Cancer ; 14: 36, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25888956

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are short, non-coding RNA molecules that play critical roles in human malignancy. However, the regulatory characteristics of miRNAs in triple-negative breast cancer, a phenotype of breast cancer that does not express the genes for estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2, are still poorly understood. METHODS: In this study, miRNA expression profiles of 24 triple-negative breast cancers and 14 adjacent normal tissues were analyzed using deep sequencing technology. Expression levels of miRNA reads were normalized with the quantile-quantile scaling method. Deregulated miRNAs in triple-negative breast cancer were identified from the sequencing data using the Student's t-test. Quantitative reverse transcription PCR validations were carried out to examine miRNA expression levels. Potential target candidates of a miRNA were predicted using published target prediction algorithms. Luciferase reporter assay experiments were performed to verify a putative miRNA-target relationship. Validated molecular targets of the deregulated miRNAs were retrieved from curated databases and their associations with cancer progression were discussed. RESULTS: A novel 25-miRNA expression signature was found to effectively distinguish triple-negative breast cancers from surrounding normal tissues in a hierarchical clustering analysis. We documented the evidence of seven polycistronic miRNA clusters preferentially harboring deregulated miRNAs in triple-negative breast cancer. Two of these miRNA clusters (miR-143-145 at 5q32 and miR-497-195 at 17p13.1) were markedly down-regulated in triple-negative breast cancer, while the other five miRNA clusters (miR-17-92 at 13q31.3, miR-183-182 at 7q32.2, miR-200-429 at 1p36.33, miR-301b-130b at 22q11.21, and miR-532-502 at Xp11.23) were up-regulated in triple-negative breast cancer. Moreover, miR-130b-5p from the miR-301b-130b cluster was shown to directly repress the cyclin G2 (CCNG2) gene, a crucial cell cycle regulator, in triple-negative breast cancer cells. Luciferase reporter assays showed that miR-130b-5p-mediated repression of CCNG2 was dependent on the sequence of the 3'-untranslated region. The findings described in this study implicate a miR-130b-5p-CCNG2 axis that may be involved in the malignant progression of triple-negative breast cancer. CONCLUSIONS: Our work delivers a clear picture of the global miRNA regulatory characteristics in triple-negative breast cancer and extends the current knowledge of microRNA regulatory network.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , MicroARNs/genética , Transcriptoma/genética , Neoplasias de la Mama Triple Negativas/genética , Regiones no Traducidas 3'/genética , Adulto , Anciano , Anciano de 80 o más Años , Proteínas de Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Ciclina G2/genética , Regulación hacia Abajo/genética , Femenino , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Persona de Mediana Edad , Regulación hacia Arriba/genética
15.
Breast Cancer Res Treat ; 147(2): 353-70, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25158930

RESUMEN

Several prognostic signatures have been identified for breast cancer. However, these signatures vary extensively in their gene compositions, and the poor concordance of the risk groups defined by the prognostic signatures hinders their clinical applicability. Breast cancer risk prediction was refined with a novel approach to finding concordant genes from leading edge analysis of prognostic signatures. Each signature was split into two gene sets, which contained either up-regulated or down-regulated genes, and leading edge analysis was performed within each array study for all up-/down-regulated gene sets of the same signature from all training datasets. Consensus of leading edge subsets among all training microarrays was used to synthesize a predictive model, which was then tested in independent studies by partial least squares regression. Only a small portion of six prognostic signatures (Amsterdam, Rotterdam, Genomic Grade Index, Recurrence Score, and Hu306 and PAM50 of intrinsic subtypes) was significantly enriched in the leading edge analysis in five training datasets (n = 2,380), and that the concordant leading edge subsets (43 genes) could identify the core signature genes that account for the enrichment signals providing prognostic power across all assayed samples. The proposed concordant leading edge algorithm was able to discriminate high-risk from low-risk patients in terms of relapse-free or distant metastasis-free survival in all training samples (hazard ratios: 1.84-2.20) and in three out of four independent studies (hazard ratios: 3.91-8.31). In some studies, the concordant leading edge subset remained a significant prognostic factor independent of clinical ER, HER2, and lymph node status. The present study provides a statistical framework for identifying core consensus across microarray studies with leading edge analysis, and a breast cancer risk predictive model was established.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Regulación hacia Abajo , Femenino , Humanos , Ganglios Linfáticos/patología , Metástasis Linfática , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Pronóstico , Receptor ErbB-2/genética , Riesgo , Regulación hacia Arriba
16.
J Biomed Sci ; 21: 24, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24650256

RESUMEN

BACKGROUND: Numerous efforts have been made to elucidate the etiology and improve the treatment of lung cancer, but the overall five-year survival rate is still only 15%. Although cigarette smoking is the primary risk factor for lung cancer, only 7% of female lung cancer patients in Taiwan have a history of smoking. Since cancer results from progressive accumulation of genetic aberrations, genomic rearrangements may be early events in carcinogenesis. RESULTS: In order to identify biomarkers of early-stage adenocarcinoma, the genome-wide DNA aberrations of 60 pairs of lung adenocarcinoma and adjacent normal lung tissue in non-smoking women were examined using Affymetrix Genome-Wide Human SNP 6.0 arrays. Common copy number variation (CNV) regions were identified by ≥30% of patients with copy number beyond 2 ± 0.5 of copy numbers for each single nucleotide polymorphism (SNP) and at least 100 continuous SNP variant loci. SNPs associated with lung adenocarcinoma were identified by McNemar's test. Loss of heterozygosity (LOH) SNPs were identified in ≥18% of patients with LOH in the locus. Aberration of SNP rs10248565 at HDAC9 in chromosome 7p21.1 was identified from concurrent analyses of CNVs, SNPs, and LOH. CONCLUSION: The results elucidate the genetic etiology of lung adenocarcinoma by demonstrating that SNP rs10248565 may be a potential biomarker of cancer susceptibility.


Asunto(s)
Adenocarcinoma/genética , Estudio de Asociación del Genoma Completo , Histona Desacetilasas/genética , Neoplasias Pulmonares/genética , Polimorfismo de Nucleótido Simple/genética , Proteínas Represoras/genética , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Anciano , Femenino , Predisposición Genética a la Enfermedad , Genoma Humano , Humanos , Pérdida de Heterocigocidad , Neoplasias Pulmonares/patología , Análisis por Micromatrices , Persona de Mediana Edad , Fumar , Taiwán
17.
Artículo en Inglés | MEDLINE | ID: mdl-38568776

RESUMEN

Dietary habits have been proven to have an impact on the microbial composition and health of the human gut. Over the past decade, researchers have discovered that gut microbiota can use nutrients to produce metabolites that have major implications for human physiology. However, there is no comprehensive system that specifically focuses on identifying nutrient deficiencies based on gut microbiota, making it difficult to interpret and compare gut microbiome data in the literature. This study proposes an analytical platform, NURECON, that can predict nutrient deficiency information in individuals by comparing their metagenomic information to a reference baseline. NURECON integrates a next-generation bacterial 16S rRNA analytical pipeline (QIIME2), metabolic pathway prediction tools (PICRUSt2 and KEGG), and a food compound database (FooDB) to enable the identification of missing nutrients and provide personalized dietary suggestions. Metagenomic information from total number of 287 healthy subjects was used to establish baseline microbial composition and metabolic profiles. The uploaded data is analyzed and compared to the baseline for nutrient deficiency assessment. Visualization results include gut microbial composition, related enzymes, pathways, and nutrient abundance. NURECON is a user-friendly online platform that provides nutritional advice to support dietitians' research or menu design.


Asunto(s)
Dieta , Microbioma Gastrointestinal , Humanos , ARN Ribosómico 16S/genética , Microbioma Gastrointestinal/genética , Metagenoma , Necesidades Nutricionales
18.
Clin Epigenetics ; 16(1): 80, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879526

RESUMEN

BACKGROUND: Older patients are at risk for acute kidney injury and chronic kidney disease. Age-related increases in DNA methylation at CpG islands have been linked to aging-related diseases like cancer and cardiovascular disease, but the exact causal relationship between methylation in renal aging and other kidney diseases remains unclear. This study aimed to elucidate the methylation status of peripheral blood mononuclear cells (PBMCs) in the Asian population. Using human whole blood DNA methylation analysis from the Taiwan Biobank, we included participants with both whole blood genome-wide methylation data and follow-up data on serum creatinine. We investigated hyper- and hypomethylated genes in comparison of participants with higher and lower estimated glomerular filtration (eGFR) decline rate in overall cohort as well as in comparison of old and young participants in subgroup of participants with higher eGFR decline rate. Common genes and signaling pathways in both comparative analyses were identified. RESULTS: Among 1587 participants in the analysis, 187 participants had higher eGFR decline rate. According to the comparison of methylation in participants with different eGFR declines and at different ages, respectively, we identified common hypermethylated genes, including DNMT3A and GGACT, as well as hypomethylated genes such as ARL6IP5, CYB5D1, BCL6, RPRD2, ZNF451, and MIAT in both participants with higher eGFR decline and those of older age. We observed associations between the methylation status of signaling pathways and aging as well as renal function decline. These pathways notably included autophagy, p38 mitogen-activated protein kinases, and sirtuins, which were associated with autophagy process and cytokine production. CONCLUSIONS: Through methylation analysis of PBMCs, we identified genes and signaling pathways which could play crucial roles in the interplay of renal aging and renal function decline. These findings contribute to the development of novel biomarkers for identifying at-risk groups and even for therapeutic agent discovery.


Asunto(s)
Envejecimiento , Islas de CpG , Metilación de ADN , Tasa de Filtración Glomerular , Humanos , Metilación de ADN/genética , Femenino , Masculino , Persona de Mediana Edad , Anciano , Taiwán , Envejecimiento/genética , Envejecimiento/sangre , Tasa de Filtración Glomerular/genética , Adulto , Islas de CpG/genética , Leucocitos Mononucleares/metabolismo , Riñón/fisiopatología , Epigénesis Genética/genética , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/fisiopatología , Estudio de Asociación del Genoma Completo/métodos
19.
Clin Epigenetics ; 16(1): 111, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164771

RESUMEN

BACKGROUND: Current research on the epigenetic repercussions of exposure to a combination of pollutants is limited. This study aims to discern DNA methylation probes associated with exposure to multiple pollutants, serving as early effect markers, and single-nucleotide polymorphisms (SNPs) as surrogate indicators for population susceptibility. The investigation involved the analysis of urine exposure biomarkers for 11 heavy metals (vanadium, arsenic, mercury, cadmium, chromium, nickel, lead, manganese, copper, strontium, thallium), polycyclic aromatic hydrocarbon (PAHs) (1-hydroxypyrene), genome-wide DNA methylation sequencing, and SNPs array on all study participants. The data were integrated with metabolomics information and analyzed both at a community level based on proximity to home addresses relative to the complex and at an individual level based on exposure biomarker concentrations. RESULTS: On a community level, 67 exposure-related CpG probes were identified, while 70 CpG probes were associated with urine arsenic concentration, 2 with mercury, and 46 with vanadium on an individual level. These probes were annotated to genes implicated in cancers and chronic kidney disease. Weighted quantile sum regression analysis revealed that vanadium, mercury, and 1-hydroxypyrene contributed the most to cg08238319 hypomethylation. cg08238319 is annotated to the aryl hydrocarbon receptor repressor (AHRR) gene, and AHRR hypomethylation was correlated with an elevated risk of lung cancer. AHRR was further linked to deregulations in phenylalanine metabolism, alanine, aspartate, and glutamate metabolism, along with heightened oxidative stress. Additionally, three SNPs (rs11085020, rs199442, and rs10947050) corresponding to exposure-related CpG probes exhibited significant interaction effects with multiple heavy metals and PAHs exposure, and have been implicated in cancer progression and respiratory diseases. CONCLUSION: Our findings underscore the pivotal role of AHRR methylation in gene-environment interactions and highlight SNPs that could potentially serve as indicators of population susceptibility in regions exposed to multiple heavy metals and PAHs.


Asunto(s)
Metilación de ADN , Exposición a Riesgos Ambientales , Metales Pesados , Polimorfismo de Nucleótido Simple , Humanos , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Masculino , Femenino , Exposición a Riesgos Ambientales/efectos adversos , Metales Pesados/orina , Metales Pesados/efectos adversos , Persona de Mediana Edad , Adulto , Islas de CpG/genética , Hidrocarburos Policíclicos Aromáticos/orina , Hidrocarburos Policíclicos Aromáticos/efectos adversos , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/genética , Biomarcadores/orina , Pirenos/orina , Contaminantes Ambientales/orina , Contaminantes Ambientales/efectos adversos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Represoras
20.
ACS Infect Dis ; 9(9): 1783-1792, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37565768

RESUMEN

Changes in the oral microbiome are associated with oral squamous cell carcinoma (OSCC). Oral microbe-derived signatures have been utilized as markers of OSCC. However, the structure of the oral microbiome during OSCC recurrence and biomarkers for the prediction of OSCC recurrence remains unknown. To identify OSCC recurrence-associated microbial biomarkers for the prediction of OSCC recurrence, we performed 16S rRNA amplicon sequencing on 54 oral swab samples from OSCC patients. Differences in bacterial compositions were observed in patients with vs without recurrence. We found that Granulicatella, Peptostreptococcus, Campylobacter, Porphyromonas, Oribacterium, Actinomyces, Corynebacterium, Capnocytophaga, and Dialister were enriched in OSCC recurrence. Functional analysis of the oral microbiome showed altered functions associated with OSCC recurrence compared with nonrecurrence. A random forest prediction model was constructed with five microbial signatures including Leptotrichia trevisanii, Capnocytophaga sputigena, Capnocytophaga, Cardiobacterium, and Olsenella to discriminate OSCC recurrence from original OSCC (accuracy = 0.963). Moreover, we validated the prediction model in another independent cohort (46 OSCC patients), achieving an accuracy of 0.761. We compared the accuracy of the prediction of OSCC recurrence between the five microbial signatures and two clinicopathological parameters, including resection margin and lymph node counts. The results predicted by the model with five microbial signatures showed a higher accuracy than those based on the clinical outcomes from the two clinicopathological parameters. This study demonstrated the validity of using recurrence-related microbial biomarkers, a noninvasive and effective method for the prediction of OSCC recurrence. Our findings may contribute to the prognosis and treatment of OSCC recurrence.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico , ARN Ribosómico 16S/genética , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA